C++继承经典样例

c++继承经典样例

#include <iostream.h>

class Base

{

private:

int b_number;

public:

Base( ){}

Base(int i) : b_number (i) { }

int get_number( ) {return b_number;}

void print( ) {cout << b_number << endl;}

};

class Derived : public Base

{

private:

int d_number;

public:

// constructor, initializer used to initialize the base part of a Derived object.

Derived( int i, int j ) : Base(i), d_number(j) { };

// a new member function that overrides the print( ) function in Base

void print( )

{

cout << get_number( ) << " ";

// access number through get_number( )

cout << d_number << endl;

}

};

int main( )

{

Base a(2);

Derived b(3, 4);

cout << "a is ";

a.print( );                // print( ) in Base

cout << "b is ";

b.print( );                // print( ) in Derived

cout << "base part of b is ";

b.Base::print( );                // print( ) in Base

return 0;

}


没有虚析构函数,继承类没有析构

//Example:  non- virtual destructors for dynamically allocated objects.

#include <iostream.h>

#include <string.h>

class Thing

{ public:

virtual void what_Am_I( ) {cout << "I am a Thing./n";}

~Thing(){cout<<"Thing destructor"<<endl;}

};

class Animal : public Thing

{

public:

virtual void what_Am_I( ) {cout << "I am an Animal./n";}

~Animal(){cout<<"Animal destructor"<<endl;}

};

void main( )

{

Thing *t =new Thing;

Animal*x = new Animal;

Thing* array[2];

array[0] = t;                                // base pointer

array[1] = x;

for (int i=0; i<2; i++)  array->what_Am_I( ) ;

delete array[0];

delete array[1];

return ;

}


纯虚函数,多态

#include <iostream.h>

#include <math.h>

class Point

{

private:

double x;

double y;

public:

Point(double i, double j) : x(i), y(j) { }

void print( ) const

{ cout << "(" << x << ", " << y << ")"; }

};

class Figure

{

private:

Point center;

public:

Figure (double i = 0, double j = 0) : center(i, j) { }

Point& location( )

{

return center;

}                  // return an lvalue

void move(Point p)

{

center = p;

draw( );

}

virtual void draw( ) = 0; // draw the figure

virtual void rotate(double) = 0;

// rotate the figure by an angle

};

class Circle : public Figure

{

private:

double radius;

public:

Circle(double i = 0, double j = 0, double r = 0) : Figure(i, j), radius(r) { }

void draw( )

{

cout << "A circle with center ";

location( ).print( );

cout << " and radius " << radius << endl;

}

void rotate(double)

{

cout << "no effect./n";

}        // must be defined

};

class Square : public Figure

{

private:

double side;        // length of the side

double angle;        // the angle between a side and the x-axis

public:

Square(double i = 0, double j = 0, double d = 0, double a = 0)        : Figure(i, j), side(d), angle(a) { }

void draw( )

{

cout << "A square with center ";

location( ).print( );

cout << " side length " << side << "./n"

<< "The angle between one side and the X-axis is " << angle << endl;

}

void rotate(double a)

{

angle += a;

cout << "The angle between one side and the X-axis is " << angle << endl;

}

void vertices( )

{

cout << "The vertices of the square are:/n";

// calculate coordinates of the vertices of the square

}

};

int main( )

{

Circle c(1, 2, 3);

Square s(4, 5, 6);

Figure *f = &c, &g = s;

f -> draw( );

f -> move(Point(2, 2));

g.draw( );

g.rotate(1);

s.vertices( );

// Cannot use g here since vertices( ) is not a member of Figure.

return 0;

}

////////////////////////////////////////////////////////////////////

#include <iostream.h>

#include <string.h>

class Thing

{

public:

virtual void what_Am_I( ) {cout << "I am a Thing./n";}

~Thing(){cout<<"Thing destructor"<<endl;}

};

class Animal : public Thing

{

public:

virtual void what_Am_I( ) {cout << "I am an Animal./n";}

~Animal(){cout<<"Animal destructor"<<endl;}

};

void main( )

{

Thing t ;

Animal x ;

Thing* array[2];

array[0] = &t;                        // base pointer

array[1] = &x;

for (int i=0; i<2; i++)  array->what_Am_I( ) ;

return ;

}



多继承

#include <iostream.h>

class A

{

private:

int a;

public:

A(int i) : a(i) { }

virtual void print( )        {cout << a << endl;}

int get_a( ) {return a;}

};

class B

{

private:

int b;

public:

B(int j) : b(j) { }

void print( )        {cout << b << endl;}

int get_b( ) {return b;}

};

class C : public A, public B

{

int c;

public:

C(int i, int j, int k) : A(i), B(j), c(k) { }

void print( )        {A::print( ); B::print( );}

// use print( ) with scope resolution

void get_ab( )        {cout << get_a( ) << " " << get_b( ) << endl;}

// use get_a( ) and get_b( ) without scope resolution

};

int main( )

{

C x(5, 8, 10);

A* ap = &x;

B* bp = &x;

ap -> print( );                // use C::print( );

bp -> print( );                // use B::print( );

//        bp -> A::print( );                // as if x is inherited from B only,

// cannot access A::print( );

x.A::print( );                // use A::print( );

x.get_ab( );

return 0;

}



共同基类的多继承

#include <iostream.h>

class R

{int r;

public:

R(int anInt){ r = anInt;};

printOn(){ cout<<"r="<<r<<endl;} ; };

class A : public R

{

int a;

public:

A(int int1,int int2):R(int2){ a = int1;};};

class B : public R

{

int b;

public:

B(int int1,int int2):R(int2){ b = int1;};};

class C : public A, public B

{

int c;

public:

C(int int1,int int2, int int3):A(int2,int3), B(int2,int3){ c = int1;}

};

int main( )

{

int i;

R rr(10);

A aa(20,30);

B bb (40,50);

C cc(5, 7, 9);

rr.printOn();

aa.printOn();                  //inherits R printOn

bb.printOn();                   //inherits R printOn

//cc.printOn();                  //would give error

return 0;}


虚基类

#include <iostream.h>

class R

{ int r;

public:

R (int x = 0) : r(x) { }   // constructor in R

void f( ){ cout<<"r="<<r<<endl;}

void printOn(){cout<<"printOn R="<<r<<endl;}

};

class A : public virtual R

{  int a;

public:

A (int x, int y) : R(x), a(y)  { } // constructor in A

void f( ){ cout<<"a="<<a<<endl;R::f();}

};

class B : public virtual R

{int b;

public:

B(int x, int z) : R(x), b(z) { }// constructor in B

void f( ){ cout<<"b="<<b<<endl;R::f();}

};

class C : public A, public B

{ int c;

public:

// constructor in C, which constructs an R object first

C(int x, int y, int z, int w) : R(x), A(x, y), B(x, z), c(w) { }

void f( ){ cout<<"c="<<c<<endl;A::f(); B::f();}

};

void main()

{  R rr(1000);

A aa(2222,444);

B bb(3333,111);

C cc(1212,345,123,45);

cc.printOn();     //uses R printOn but only 1 R..no ambiguity

cc.f();                // shows multiple call of the R::f()

}

////////////////////////////////////////

#include <iostream.h>

class R

{ int r;

public:

R (int x = 0) : r(x) { }   // constructor in R

void f( ){ cout<<"r="<<r<<endl;}

};

class A : virtual public R

{ int a ;

protected:

void fA( ){cout<<"a="<<a<<endl;};

public:

A (int x, int y) : R(x), a(y)  { } // constructor in A

void f( ) {fA( ); R::f( );}

};

class B : virtual public R

{  int b;

protected:

void fB( ){cout<<"b="<<b<<endl;};

public:

B (int x, int y) : R(x), b(y)  { } // constructor in A

void f( ) {fB( ); R::f( );}

};

class C : public A, public B

{ int c;

protected:

void fC( ){ cout<<"c="<<c<<endl;};

public:

C(int x, int y, int z, int w) : R(x), A(x, y), B(x, z), c(w) { }

void f( )

{

R::f( );                    // acts on R stuff only

A::fA( );            //acts on A stuff only

B::fB( );                   // acts on B stuff only

fC( );                  // acts on C stuff only

}

};

void main()

{  R rr(1000);

A aa(2222,444);

B bb(3333,111);

C cc(1212,345,123,45);

cc.f();

}



私有继承

// Access levels

#include <iostream.h>

class Base

{

private:

int priv;

protected:

int prot;

int get_priv( ) {return priv;}

public:

int publ;

Base( );

Base(int a, int b, int c) : priv(a), prot(b), publ(c) { }

int get_prot( ) {return prot;}

int get_publ( ) {return publ;}

};

class Derived1 : private Base        // private inheritance

{

public:

Derived1 (int a, int b, int c) : Base(a, b, c) { }

int get1_priv( ) {return get_priv( );}

// priv not accessible directly

int get1_prot( ) {return prot;}

int get1_publ( ) {return publ;}

};

class Leaf1 : public Derived1

{

public:

Leaf1(int a, int b, int c) : Derived1(a, b, c) { }

void print( )

{

cout << "Leaf1 members: " << get1_priv( ) << " "

//                        << get_priv( )        // not accessible

<< get1_prot( ) << " "

//                        << get_prot( )         // not accessible

//                        << publ         // not accessible

<< get1_publ( ) << endl;

}  // data members not accessible.  get_ functions in Base not accessible

};

class Derived2 : protected Base // protected inheritance

{

public:

Derived2 (int a, int b, int c) : Base(a, b, c) { }

};

class Leaf2 : public Derived2

{

public:

Leaf2(int a, int b, int c) : Derived2(a, b, c) { }

void print( )

{

cout << "Leaf2 members: " << get_priv( ) << " "

//                        << priv                 // not accessible

<< prot << " "

<< publ << endl;

}  // public and protected data members accessible.  get_ functions in Base accessible.

};

class Derived3 : public Base  // public inheritance

{

public:

Derived3 (int a, int b, int c) : Base(a, b, c) { }

};

class Leaf3 : public Derived3

{

public:

Leaf3(int a, int b, int c) : Derived3(a, b, c) { }

void print( )

{

cout << "Leaf3 members: " << get_priv( ) << " "

<< prot << " "

<< publ << endl;

}  // public and protected data members accessible.  get_ functions in Base accessible

};

int main( )

{

Derived1 d1(1, 2, 3);

Derived2 d2(4, 5, 6);

Derived3 d3(7, 8, 9);

//        cout << d1.publ;                // not accessible

//        cout << d1.get_priv( );        // not accessible

//        cout << d2.publ;                // not accessible

//        cout << d2.get_priv( );        // not accessible

cout << d3.publ;                // OK

cout << d3.get_prot( );        // OK

Leaf1 lf1(1, 2, 3);

Leaf2 lf2(4, 5, 6);

Leaf3 lf3(7, 8, 9);

//         cout << lf1.publ << endl;                    // not accessible

//         cout << lf2.publ << endl;                // not accessible

cout << lf3.publ << endl;                 // OK

return 0;

}



多级继承

// Point-Circle-Cylinder

#include <iostream.h>

// THE POINT CLASS

class Point

{

friend ostream & operator<<(ostream &,Point &);

public:

//  constructor

Point (double xval =0, double yval=0 )

{ x=xval; y=yval;};

protected:       // accessed by derived class

double  x;

double  y;

};

ostream & operator << (ostream & os,

Point &  apoint)

{

cout <<" Point:X:Y: "<<apoint.x << ","

<< apoint.y<< "/n";

return os;

}

//The Circle class  inherits from class Point

class Circle : public Point

{

friend ostream & operator<<(ostream &,Circle&);

public:

Circle (double r=0,double xval=0,double yval=0)

:Point(xval,yval), radius(r)

{

//radius = r;

}

double area()

{

return (3.14159* radius *radius);

}

protected:

double radius;

};

//note casting circle to point

ostream & operator <<(ostream & os, Circle & aCircle)

{

cout<< "Circle:radius:" << aCircle.radius;

os<< aCircle.x << "/n";

os<< aCircle.y << "/n";

return os;

}

// THE CYLINDER CLASS

class  Cylinder  : public Circle

{

friend ostream & operator << (ostream & ,Cylinder &);

public:

Cylinder (double hv=0,double rv=0,

double xv=0,double yv=0 )

: Circle( xv,yv,rv)

{

height = hv;

}

double  area ( );

protected:     // may have derived classes

double  height;

};

double Cylinder :: area ( )

{ // Note that cylinder area uses Circle area

return  2.0* Circle::area() + 2.0*3.14159* radius*height;

}

ostream & operator << (ostream & os,

Cylinder & acylinder)

{

cout << "cylinder dimensions: ";

cout << "x: " <<acylinder.x;

cout << "  y: " <<acylinder.y ;

cout << "  radius: " <<acylinder.radius ;

cout << "  height: " <<acylinder.height

<< endl;

return os;

}

int main(void)

{

Point p(2,3);

Circle c(7,6,5);

Cylinder cyl(10,11,12,13);

cout << p;

cout << c;

cout << "area of cirle:" << c.area() << endl;

cout<< cyl;

cout<<"area of cylinder:"<< cyl.area()<<endl ;

cout<<"area of cylinder base is "

<< cyl.Circle::area() << endl;

return 0;

}



protected 訪问控制属性在继承的意义

//Example of treating derived class object as base class objects. Point------Circle

#include <iostream.h>

// THE POINT CLASS

class Point

{

friend ostream & operator<<(ostream &,Circle&);

public:

Point (double xval =0, double yval=0 ) { x=xval; y=yval;};

public:

void print()

{

cout <<" Point:X:Y: "<<x << "," <<y<< "/n";

}

protected:       // accessed by derived class

double  x;    double  y;

};

ostream & operator << (ostream & os, Point &  apoint)

{

cout <<" Point:X:Y: "<<apoint.x << ","<< apoint.y<< "/n";

return os;

}

//The Circle class  inherits from class Point

class Circle : public Point

{

friend ostream & operator<<(ostream &,Circle&);

public:

Circle (double r=0,double xval=0,double yval=0):Point(xval,yval)

{ radius = r;};

void print()

{

cout<< "Circle:radius:" <<radius<<endl;

cout <<" Point:X:Y: "<<x << "," <<y<< "/n";

}

double area()

{ return (3.14159* radius *radius);};

protected:

double radius;

};

//note casting circle to point

ostream & operator <<(ostream & os, Circle & aCircle)

{

cout<< "Circle:radius:" << aCircle.radius;

cout<< (Point) aCircle << "/n";

return os;

}

//We will look at a few main programs based on previous class definitions. Casting and assignments

void main (void )

{

Point p(2,3);         cout <<"Point P=  "<< p;

Point pp(0,0);       cout <<"Point PP=  "<< pp;

Circle c(7,6,5);     cout <<"Circle c=  "<< c;        //radius =7

pp = p;             cout <<"Point PP=  "<< pp;    //built in assign =

// a circle is a member of the point class so assign a circle to a point.

pp = c;           //legal; also assignment O.K.

cout <<"Point PP=  "<< pp;

pp= (Point) c;    // but better  use the cast

cout <<"Point PP=  "<< pp;  //note we get only the point part of the Circle

//c = (Circle) pp;   //  illegal Cannot convert ‘class Point‘ to ‘class Circle‘

//c=pp;                 //illegal assignment not defined

Point*  p;

p = &c;

P->print();    //call base class print

((Circle*)p)->print();

Point& r = c;

r.print();

((Circle&)r).print();

}


类的兼容性规则

#include <iostream.h>

class Base

{

public:

void func( )

{cout << "Base class function./n";}

};

class Derived : public Base

{

public:

void func( )

{cout << "Derived class function./n";}

};

void foo(Base b)

{ b.func( ); }

int main( )

{

Derived d;

Base b;

Base * p = &d;

Base& br = d;

b = d;

b.func( );

d.func( );

p -> func( );

foo(d);

br.func( );

return 0;

}


虚析构函数,防止内存泄露

#include <iostream.h>

#include <string.h>

class Base

{

protected:

int id;

char * name;

public:

// default constructor

Base(int a = 0, char * s = "") : id(a)

{

if (!s)

{

name = NULL;

}

else

{

name = new char[strlen(s) + 1];

strcpy(name, s);

}

cout << "base default constructor/n";

}

// copy constructor

Base(const Base& b) : id(b.id)

{

if (!b.name) { name = NULL; }

else

{

name = new char[strlen(b.name) + 1];

strcpy(name, b.name);

}

cout << "base copy constructor/n";

}

// destructor

~Base( )

{

if( name != NULL )        delete [ ] name;

cout << "base destructor/n";

}

const Base& operator= (const Base& b);

friend ostream& operator << (ostream&, const Base&);

};

const Base& Base:perator= (const Base& b)

{

if (this != &b)                        // Check if an object is assigned to itself.

{

id = b.id;

delete [ ] name;                //  Destroy the old object.

if (!b.name) { name = NULL; }

else

{

name = new char[strlen(b.name) + 1];

strcpy(name, b.name);

}

}

cout << "base assignment operator/n";

return *this;

}

ostream& operator << (ostream& out, const Base& b)

{

out << "Base member id = " << b.id << endl;

out << "Base member name = " << b.name << endl;

return out;

}

class Derived : public Base

{

private:

float f;

char * label;

public:

// default constructor

Derived(int a = 0, char * s = "", float x = 0, char * t = "") : Base(a, s), f(x)

{

if (!t) { label = NULL; }

else

{

label = new char [strlen(t) + 1];

strcpy(label, t);

}

cout << "derived default constructor/n";

}

// copy constructor

Derived(const Derived& d) : Base(d), f(d.f)

// d used as an instance of Base

{

if(!d.label) { label = NULL; }

else

{

label = new char [strlen(d.label) + 1];

strcpy(label, d.label);

}

cout << "derived copy constructor/n";

}

// destructor

~Derived( )

{

delete [ ] label;

cout << "derived destructor/n";

}

const Derived& operator= (const Derived& d);

friend ostream& operator << (ostream&, const Derived&);

};

const Derived& Derived:perator= (const Derived& d)

{

if (this != &d)

{

delete [ ] label;

Base:perator=(d);        //  Assign the Base part of d to the Base

// part of the object that calls this operator;

f = d.f;

if (!d.label) { label = NULL; }

else

{

label = new char [strlen(d.label) + 1];

strcpy(label, d.label);

}

cout << "derived assignment operator/n";

}

return *this;

}

ostream& operator << (ostream& out, const Derived& d)

{

out << (Base)d;                // Convert d to Base object to output Base members.

out << "Derived member f = " << d.f << endl;

out << "Derived member label = " << d.label << endl;

return out;

}

int main( )

{

Derived d1;

Derived  d2(d1);

return 0;

}

时间: 2024-10-14 16:45:08

C++继承经典样例的相关文章

Python类的继承演示样例

class Pet: __name = "" def __init__(self, name): self.__name = name def bark(self): return "Pet : " + self.__name def getName(self): return self.__name; class Dog(Pet): __age = -1 def __init__(self, name, age): Pet.__init__(self, name)

到底什么叫贪心策略(内含几个经典贪心样例和三大图论算法)

昨天和前天写完了分治和dp,感觉收获真的挺大的,复习绝不是简单的重复记忆,而是将所学知识融会 贯通的过程,分析各种思想的异同,这些都是在平时学习和刷题的时候没有认真考虑的问题 好了,扯远了 今天分析一下到底什么叫贪心策略 怎么理解贪心:贪心在解决问题上是目光短浅的,仅仅根据当前的已知信息就做出选择,并且一旦做了选择,就不再更改 比如01背包问题,用贪心的话是不可解决的,因为贪心每次只顾眼前最优,即每次选择价值最大的,而忽 略了另外一个变量,物品的重量,如果还考虑物品的重量的话,那就是dp了 贪心

Activiti的简单入门样例(经典的请假样例)

经典的请假样例: 流程例如以下,首先须要部门经理审批.假设请假天数大于2天,则须要总经理审批,否则HR审批就可以 一:创建maven项目,项目结构例如以下: 增加依赖 pom.xml <dependency> <groupId>org.activiti</groupId> <artifactId>activiti-engine</artifactId> <version>5.17.0</version> </depe

Java线程演示样例 - 继承Thread类和实现Runnable接口

进程(Process)和线程(Thread)是程序执行的两个基本单元. Java并发编程很多其它的是和线程相关. 进程 进程是一个独立的执行单元,可将其视为一个程序或应用.然而,一个程序内部同事还包括多个进程. Java执行时环境就是一个单独的进程,在它内部还包括了作为进程的各种类和程序. 线程 能够将线程看做轻量级的进程. 线程存在于进程其中,须要的资源开销较小.同一进程中的线程共享进程的资源. Java多线程 每个Java引用都仅仅要有一个线程 - 主线程(main thread).尽管后台

Hadoop辅助排序样例一

1. 样例数据 011990-99999 SIHCCAJAVRI 012650-99999 TYNSET-HANSMOEN 012650-99999 194903241200 111 012650-99999 194903241800 78 011990-99999 195005150700 0 011990-99999 195005151200 22 011990-99999 195005151800 -11 2. 需求 3. 思路.代码 将气象站ID相同的气象站信息和天气信息交由同一个 Re

JDBC连接MySQL数据库及演示样例

JDBC是Sun公司制定的一个能够用Java语言连接数据库的技术. 一.JDBC基础知识         JDBC(Java Data Base Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,能够为多种关系数据库提供统一訪问,它由一组用Java语言编写的类和接口组成.JDBC为数据库开发者提供了一个标准的API,据此能够构建更高级的工具和接口,使数据库开发者能够用纯 Java API 编写数据库应用程序,而且可跨平台执行,而且不受数据库供应商的限制.

java设计模式演示样例

创建模式 1.工厂方法模式(Factory Method)  将程序中创建对象的操作,单独出来处理,创建一个产品的工厂接口,把实际的工作转移到详细的子类.大大提高了系统扩展的柔性,接口的抽象化处理给相互依赖的对象创建提供了最好的抽象模式. public class TestFactoryMethod { public static void main(String[] args) { AnimalFactory af=new DogFactory(); Animal1 a=af.getAnima

Android之——多线程下载演示样例

转载请注明出处:http://blog.csdn.net/l1028386804/article/details/46883927 一.概述 说到Android中的文件下载.Android API中明白要求将耗时的操作放到一个子线程中运行,文件的下载无疑是须要耗费时间的.所以要将文件的下载放到子线程中运行. 以下,我们一起来实现一个Android中利用多线程下载文件的小样例. 二.服务端准备 在这个小样例中我下面载有道词典为例.在网上下载有道词典的安装包,在eclipse中新建项目web.将下载

【转】Scala学习——模式匹配和样例类

原文链接 http://nerd-is.in/2013-09/scala-learning-pattern-matching-and-case-classes/ 原文发表于:http://nerd-is.in/2013-09/scala-learning-pattern-matching-and-case-classes/ Scala强大的模式匹配机制,可以应用在switch语句.类型检查以及“析构”等场合. 样例类对模式匹配进行了优化. 更好的switch 1 2 3 4 5 6 7 8 va