几种典型的仿射变换:
public static AffineTransform getTranslateInstance(doubl
仿射变换-例
e tx, double ty)
平移变换,将每一点移动到(x+tx, y+ty),变换矩阵为:
[ 1 0 tx ]
[ 0 1 ty ]
[ 0 0 1 ]
(译注:平移变换是一种“刚体变换”,rigid-body transformation,中学学过的物理,都知道啥叫“刚体”吧,就是不会产生形变的理想物体,平移当然不会改变二维图形的形状。同理,下面的“旋转变换”也是刚体变换,而“缩放”、“错切”都是会改变图形形状的。)
public static AffineTransform getScaleInstance(double sx, double sy)
缩放变换,将每一点的横坐标放大(缩小)至sx倍,纵坐标放大(缩小)至sy倍,变换矩阵为:
[ sx 0 0 ]
[ 0 sy 0 ]
[ 0 0 1 ]
当sx=sy时,称为尺度缩放,sx不等于sy时,这就是我们平时所说的拉伸变换。
public static AffineTransform getShearInstance(double shx, double shy)
剪切变换,变换矩阵为:
[ 1 shx 0 ]
[ shy 1 0 ]
[ 0 0 1 ]
相当于一个横向剪切与一个纵向剪切的复合
[ 1 0 0 ][ 1 shx 0 ]
[ shy 1 0 ][ 0 1 0 ]
[ 0 0 1 ][ 0 0 1 ]
(译注:“剪切变换”又称“错切变换”,指的是类似于四边形不稳定性那种性质,街边小商店那种铁拉门都见过吧?想象一下上面铁条构成的菱形拉动的过程,那就是“错切”的过程。)
public static AffineTransform getRotateInstance(double theta)
典型的仿射变换-平移变换 |
典型的仿射变换-缩放变换 |
典型的仿射变换-剪切变换 |
典型的仿射变换-旋转变换 |
典型的仿射变换-旋转变换 |
? |
编辑本段相关例子
旋转变换1,目标图形围绕原点逆时针旋转theta弧度,变换矩阵为:
[ cos(theta) -sin(theta) 0 ]
[ sin(theta) cos(theta) 0 ]
[ 0 0 1 ]
public static AffineTransform getRotateInstance(double theta, double x, double y)
旋转变换2,目标图形以(x, y)为轴心逆时针旋转theta弧度,变换矩阵为:
[ cos(theta) -sin(theta) x-x*cos+y*sin]
[ sin(theta) cos(theta) y-x*sin-y*cos ]
[ 0 0 1 ]
相当于两次平移变换与一次原点旋转变换的复合:
[1 0 x][cos(theta) -sin(theta) 0][1 0- x]
[0 1 y][sin(theta) cos(theta) 0][0 1 -y]
[0 0 1 ][ 0 0 1 ][0 0 1]
这里是以空间任一点为圆心旋转的情况。
http://blog.csdn.net/carina197834/article/details/8090467