Horizontally Visible Segments
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 4645 | Accepted: 1706 |
Description
There is a number of disjoint vertical line segments in the plane. We say that two segments are horizontally visible if they can be connected by a horizontal line segment that does not have any common points with other vertical
segments. Three different vertical segments are said to form a triangle of segments if each two of them are horizontally visible. How many triangles can be found in a given set of vertical segments?
Task
Write a program which for each data set:
reads the description of a set of vertical segments,
computes the number of triangles in this set,
writes the result.
Input
The first line of the input contains exactly one positive integer d equal to the number of data sets, 1 <= d <= 20. The data sets follow.
The first line of each data set contains exactly one integer n, 1 <= n <= 8 000, equal to the number of vertical line segments.
Each of the following n lines consists of exactly 3 nonnegative integers separated by single spaces:
yi‘, yi‘‘, xi - y-coordinate of the beginning of a segment, y-coordinate of its end and its x-coordinate, respectively. The coordinates satisfy 0 <= yi‘ < yi‘‘ <= 8 000, 0 <= xi <= 8 000. The segments are disjoint.
Output
The output should consist of exactly d lines, one line for each data set. Line i should contain exactly one integer equal to the number of triangles in the i-th data set.
Sample Input
1 5 0 4 4 0 3 1 3 4 2 0 2 2 0 2 3
Sample Output
1
Source
题目大意:在水平坐标系内,有n条垂直线段,问任意三条线段组成一组,问有多少组线段满足,其中任意俩条线段水平可见。
水平可见满足:存在一条水平线段将俩条线段连接起来,并且中间不与其他任意线段有交点。
分析:线段树区间覆盖问题。可以将线段按x轴大小排序,然后进行纵坐标的染色。可以将线段编号理解为颜色,那么判断该线段是否与前面的线段可见,只需查询判断该区间与原来的区间重复的地方有没有被染色,如果有就表明可见。注意要先查询后更新。最后将可见的线段都用数组存下,暴力查询有几组。
还有一个就是,要注意线段树的建立本身。线段树是以一个点当做区间建树的,即[1,1]是一个区间,所以会存在这样一种情况:从左往右的线段是[1,2],[3,4],[2,3],进行第三条线段查询的时候会发现[2,3]这个区间已经被覆盖了,其实本身是还没有被覆盖的。
解决办法则是:对于纵坐标都乘以2,这样的话刚才的情况就变成了[2,4],[6,8],[4,6],此时中间就有空隙[5,5]了,就不会发生刚才的错误了。
#include<stdio.h> #include<string.h> #include<algorithm> #define M 16005 using namespace std; struct tree{ int l,r,color; }tree[M<<2]; struct node{ int x,y1,y2; }segment[8005]; bool a[8005][8005]; //bool型省下了大量空间,用int会MLE. bool cmp(node a,node b){ return a.x<b.x; } void build(int l,int r,int root) { tree[root].l=l; tree[root].r=r; tree[root].color=-1; if(l==r)return; int mid=l+r>>1; build(l,mid,root<<1); build(mid+1,r,root<<1|1); } void pushdown(int root) { if(tree[root].l==tree[root].r)return; if(tree[root].color!=-1) { tree[root<<1].color=tree[root<<1|1].color=tree[root].color; tree[root].color=-1; } return; } void update(int l,int r,int z,int root) { if(tree[root].l==l&&tree[root].r==r){ tree[root].color=z; return ; } pushdown(root); int mid=tree[root].l+tree[root].r>>1; if(r<=mid)update(l,r,z,root<<1); else if(l>mid)update(l,r,z,root<<1|1); else { update(l,mid,z,root<<1); update(mid+1,r,z,root<<1|1); } } void query(int l,int r,int c,int root) { if(tree[root].color!=-1) { a[tree[root].color][c]=true; return; } if(tree[root].l==tree[root].r)return; int mid=tree[root].l+tree[root].r>>1; if(r<=mid) query(l,r,c,root<<1); else if(l>mid) query(l,r,c,root<<1|1); else { query(l,mid,c,root<<1); query(mid+1,r,c,root<<1|1); } } int main() { int d,i,j,k,n; scanf("%d",&d); while(d--) { scanf("%d",&n); memset(a,false,sizeof(a)); build(0,16000,1); for(i=0;i<n;i++) { scanf("%d%d%d",&segment[i].y1,&segment[i].y2,&segment[i].x); } sort(segment,segment+n,cmp); for(i=0;i<n;i++) { query(2*segment[i].y1,2*segment[i].y2,i,1); update(2*segment[i].y1,2*segment[i].y2,i,1); } int ans=0; for(i=0;i<n;i++) for(j=i+1;j<n;j++) { if(a[i][j]){ for(k=j+1;k<n;k++) if(a[j][k]&&a[i][k])ans++; } } printf("%d\n",ans); } return 0; }
就浏览别人博客的时候发现这样一句话://又是一个偶数代表点,奇数代表区间的线段树、或许这就是线段树处理区间和点问题的方法吧
做这题才去仔细了解线段树本身的建树特征。上面的那句话虽然还不是很懂,但是慢慢来吧,有朝一日会明白的吧!
版权声明:本文为博主原创文章,未经博主允许不得转载。