Linux SDIO总线驱动(一)

SDIO卡

SDIO卡是在SD内存卡接口的基础上发展起来的接口,SDIO接口兼容以前的SD内存卡,并且可以连接SDIO接口的设备,目前根据SDIO协议的SPEC,SDIO接口支持的设备总类有蓝牙,网卡,电视卡等。

SDIO协议是由SD卡的协议演化升级而来的,很多地方保留了SD卡的读写协议,同时SDIO协议又在SD卡协议之上添加了CMD52和CMD53命令。由于这个,SDIO和SD卡规范间的一个重要区别是增加了低速标准,低速卡的目标应用是以最小的硬件开始来支持低速I/O能力。低速卡支持类似调制解调器,条形码扫描仪和GPS接收器等应用。高速卡支持网卡,电视卡还有“组合”卡等,组合卡指的是存储器+SDIO。

SDIO和SD卡的SPEC间的又一个重要区别是增加了低速标准。SDIO卡只需要SPI和1位SD传输模式。低速卡的目标应用是以最小的硬件开支来支持低速I/O能力,低速卡支持类似MODEM,条形扫描仪和GPS接收器等应用。对组合卡来说,全速和4BIT操作对卡内存储器和SDIO部分都是强制要求的。

在非组合卡的SDIO设备里,其最高速度要只有达到25M,而组合卡的最高速度同SD卡的最高速度一样,要高于25M。

SDIO总线

       SDIO总线和USB总线类似,SDIO总线也有两端,其中一端是主机(HOST)端,另一端是设备端(DEVICE),采用HOST- DEVICE这样的设计是为了简化DEVICE的设计,所有的通信都是由HOST端发出命令开始的。在DEVICE端只要能解溪HOST的命令,就可以同HOST进行通信了。

SDIO的HOST可以连接多个DEVICE,如下图所示:

这个是同SD的总线一样的,其中有如下的几种信号

1.       CLK信号:HOST给DEVICE的时钟信号.

2.       CMD信号:双向的信号,用于传送命令和反应。

3.       DAT0-DAT3 信号:四条用于传送的数据线。

4.       VDD信号:电源信号。

5.       VSS1,VSS2:电源地信号。

在SDIO总线定义中,DAT1信号线复用为中断线。在SDIO的1BIT模式下DAT0用来传输数据,DAT1用作中断线。在SDIO的4BIT模式下DAT0-DAT3用来传输数据,其中DAT1复用作中断线。

SDIO命令:

SDIO总线上都是HOST端发起请求,然后DEVICE端回应请求。其中请求和回应中会数据信息。

1.       Command:用于开始传输的命令,是由HOST端发往DEVICE端的。其中命令是通过CMD信号线传送的。

2.       Response:回应是DEVICE返回的HOST的命令,作为Command的回应。也是通过

CMD线传送的。

3.       Data:数据是双向的传送的。可以设置为1线模式,也可以设置为4线模式。数据是通过DAT0-DAT3信号线传输的。

SDIO的每次操作都是由HOST在CMD线上发起一个CMD,对于有的CMD,DEVICE需要返回Response,有的则不需要。

对于读命令,首先HOST会向DEVICE发送命令,紧接着DEVICE会返回一个握手信号,此时,当HOST收到回应的握手信号后,会将数据放在4位的数据线上,在传送数据的同时会跟随着CRC校验码。当整个读传送完毕后,HOST会再次发送一个命令,通知DEVICE操作完毕,DEVICE同时会返回一个响应。

对于写命令,首先HOST会向DEVICE发送命令,紧接着DEVICE会返回一个握手信号,此时,当HOST收到回应的握手信号后,会将数据放在4位的数据线上,在传送数据的同时会跟随着CRC校验码。当整个写传送完毕后,HOST会再次发送一个命令,通知DEVICE操作完毕,DEVICE同时会返回一个响应。

SDIO的寄存器:

      SDIO卡的设备驱动80%的任务就是操作SDIO卡上的有关寄存器。SDIO卡最多允许有7个功能(function),这个同其功能号是对应的(0~7),每个功能都对应一个128K字节大小的寄存器,这个见下面的图。功能号之所以取值范围是1~7,而没有包含0,是因为功能0并不代表真正的功能,而代表CIA寄存器,即Common I/O Area,这个纪录着SDIO卡的一些基本信息和特性,并且可以改写这些寄存器。其中地址0x1000~0x17fff是SDIO卡的CIS区域,就是基本信息区域,Common
Information Structure。初始化的时候读取并配对SDIO设备。

这些寄存器的详细分区已经其对应的功能,在开发过程中都是需要仔细研读的,这些都在协议的SPEC中都有详细说明,这里就不在罗索了。

CMD52命令:

SDIO设备为了和SD内存卡兼容,SD卡所有Command和Response完全兼容,同时加入了一些新的Command和Response。例如,初始化SD内存卡使用ACMD41,而SDIO卡设备则用CMD5通知DEVICE进行初始化。

但二者最重要的区别是,SDIO卡比SD内存卡多了CMD52和CMD53命令,这两个命令可以方便的访问某个功能的某个地址寄存器。

CMD52命令是IO_RW_DIRECT命令的简称,其命令格式如下

首先第一位为0,表明是起始位,第二位为传输方向,这里为1,代表方向为HOST向DEVICE设备传送,其后6位为命令号,这里是110100b,用十进制表示为52,CMD52的名字也由此而来。紧接着是读写标志位。

      然后是操作的功能号。也就是functionnumber。如果为0则指示为CCCR寄存器组。

紧接着是寄存器地址,用17指示,由于功能寄存器有128K地址,17位正好能寻址。

再下来8位Write data or Staff Bits的意思是说,如果当前为写操作,则为数据,否则8位为填充位。无意义。

最后7位为CRC校验码。最后一位为结束位0。

对于CMD52的Response是48位,命令格式如下:

总结下,CMD52是由HOST发往DEVICE的,它必须有DEVICE返回来的Response。 CMD52不需要占用DAT线,读写的数据是通过CMD52或者Response来传送。每次CMD52只能读或者写一个byte.

 

CMD53命令:

CMD52每次只能读写一个字节,因为有了CMD53对读写进行了扩展,CMD53允许每次读写多个字节或者多个块(BLOCK)。CMD53的命令格式如下:

第一位是1,为开始位,然后是一位方向位,总是1,代表方向为HOST向DEVICE设备传送,其后6位为命令号,这里是110101b,用十进制表示为53,CMD53的名字也由此而来。

然后是1位的读写标志。接着是3位功能号,这个同CMD52都是相同的。BlockMode如果1代表是块传输模式,否则为字节传输模式。

OP Code为操作位,如果是0,代表数据往固定的位置读写,如果1代表是地质增量读写。例如,对地址0固定读写16个字节,相当于16次读写的地址0,而对地址0增量读写16个字节,相当于读写0~15地址的数据。

然后是17位的地址寄存器,可以寻址到128K字节的地址,然后是9位的读写的计数,对于字节读取,读写大小就是这个计数,而对于块读写,读写的大小是计数乘以块的大小。

随后的7位为CRC校验码。最后一位为1。

当读写操作是块操作的时候,块的大小是可以通过设置FBR中的相关寄存器来设置。

同CMD52命令不同的是,CMD53没有返回的命令的,这里判断是否DEVICE设备读写完毕是需要驱动里面自己判断的,一般有2个方法,1.设置相应的读写完毕中断。如果DEVICE设备读写完毕,则对HOST设备发送中断。2.HOST设备主动查询DEVICE设备是否读写完毕,可以通过CMD命令是否有返回来判断是否DEVICE是否读写完毕。

时间: 2024-09-28 17:04:43

Linux SDIO总线驱动(一)的相关文章

Linux SDIO总线驱动(二)

驱动: 以SDIO为例其会采用mmc_attach_sdio来实现驱动和设备的匹配,其本质还是根据sdio_bus的匹配规则来实现匹配.在mmc_attach_sdio中首先是mmc匹配一个bus,即采用何种bus来进行mmc bus来处理host.在这里需要理解一点就是在SDIO中,对于SD卡存储器mmc为实体设备,而对于非SD卡存储器,如SDIO接口的设备,则mmc则表征为bus,这个比较重要.除了mmc bus外还存在SDIO_BUS. /* * Starting point for SD

基于MCP2515的Linux CAN总线驱动程序设计

MCP2515简介 MCP2515是一种独立的CAN总线通信控制器,是Microchip公司首批独立CAN解决方案的升级器件,其传输能力较Microchip公司原有CAN控制器(MCP2510)高两倍,最高通信速率可达到1Mbps.MCP2515能够接收和发送标准数据帧和扩展数据帧以及远程帧,通过两个接收屏蔽寄存器和六个接收过滤寄存器滤除无关报文,从而减轻CPU负担. MCP2515主要功能参数及电气特性如下: (1)支持CAN技术规范2.0A/B, 最高传输速率达到1Mbps: (2)支持标准

linux sdio wifi驱动知识总结(一)

这两周在tq imx6ul下调一个迈威88w8801sdio wifi模组,最后尴尬的发现tq imx6ul并不支持sdio wifi.至于不支持的原因会在后面简单说一下,小弟才疏学浅如果有大佬在tqimx6ul上成功移植过sdio wifi,也请多多指教,好了现在进入正题吧. 首先我们要搞清楚SDIO WIFI是什么,SDIO WIFI首先是一个网络设备,然后才是一个块设备.一个网络设备驱动程序,必须要具有的是收包发包函数.网络设备注册函数.接下来参照宋宝华<Linux设备驱动开发详解-基于最

linux PMBus总线驱动设计分析

PMBus协议规范介绍 PMBus是一套对电源进行配置.控制和监控的通讯协议标准.其最新版本为1.3,该规范还在不断演进中,比如新标准中新增的zone PMBus.AVSBus等特性.在其官网上有详细的规范文档,本节不尝试翻译规范文档,重点记录作者在了解PMBus过程中的疑问和解答. PMBus与I2C.SMBus的区别? PMBus在SMBus(System Management Bus)基础上增加了一套电源配置.控制和监控规范.SMBus最初是为电池智能管理而开发的一套标准,其基于I2C协议

Linux平台总线驱动设备模型

platform总线是一种虚拟的总线,相应的设备则为platform_device,而驱动则为platform_driver.Linux 2.6的设备驱动模型中,把I2C.RTC.LCD等都归纳为platform_device. 总线将设备和驱动绑定,在系统每注册一个设备的时候,会寻找与之匹配的驱动:相反的,在系统每注册一个驱动的时候,会寻找与之匹配的设备,而匹配由总线完成. Linux2.6系统中定义了一个bus_type的实例platform_bus_type [cpp] view plai

Linux 下wifi 驱动开发(三)—— SDIO接口WiFi驱动浅析

SDIO-Wifi模块是基于SDIO接口的符合wifi无线网络标准的嵌入式模块,内置无线网络协议IEEE802.11协议栈以及TCP/IP协议栈.可以实现用户主平台数据通过SDIO口到无线网络之间的转换.SDIO具有数据传输快,兼容SD.MMC接口等特点. 对于SDIO接口的wifi,首先,它是一个sdio的卡的设备.然后具备了wifi的功能.所以.注冊的时候还是先以sdio的卡的设备去注冊的. 然后检測到卡之后就要驱动他的wifi功能了.显然,他是用sdio的协议,通过发命令和数据来控制的.以

让天堂的归天堂,让尘土的归尘土——谈Linux的总线、设备、驱动模型

公元1951年5月15日的国会听证上,美国陆军五星上将麦克阿瑟建议把朝鲜战争扩大至中国,布莱德利随后发言:"如果我们把战争扩大到共产党中国,那么我们会被卷入到一场错误的时间,错误的地点同错误的对手打的一场错误的战争中." 写代码,适用于同样的原则,那就是把正确的代码放到正确的位置而不是相反.同样的一个代码,可以出现在多个可能的位置,它究竟应该出现在哪里,是软件架构设计的结果,说白了一切都是为了高内核和低耦合. 1.   陷入绝境 下面我们设想一个名字叫做ABC的简单的网卡,它需要接在一

Linux SPI总线和设备驱动架构之四:SPI数据传输的队列化

我们知道,SPI数据传输可以有两种方式:同步方式和异步方式.所谓同步方式是指数据传输的发起者必须等待本次传输的结束,期间不能做其它事情,用代码来解释就是,调用传输的函数后,直到数据传输完成,函数才会返回.而异步方式则正好相反,数据传输的发起者无需等待传输的结束,数据传输期间还可以做其它事情,用代码来解释就是,调用传输的函数后,函数会立刻返回而不用等待数据传输完成,我们只需设置一个回调函数,传输完成后,该回调函数会被调用以通知发起者数据传送已经完成.同步方式简单易用,很适合处理那些少量数据的单次传

Linux SPI总线和设备驱动架构之三:SPI控制器驱动

通过第一篇文章,我们已经知道,整个SPI驱动架构可以分为协议驱动.通用接口层和控制器驱动三大部分.其中,控制器驱动负责最底层的数据收发工作,为了完成数据的收发工作,控制器驱动需要完成以下这些功能:1.    申请必要的硬件资源,例如中断,DMA通道,DMA内存缓冲区等等:2.    配置SPI控制器的工作模式和参数,使之可以和相应的设备进行正确的数据交换工作: 3.    向通用接口层提供接口,使得上层的协议驱动可以通过通用接口层访问控制器驱动: 4.    配合通用接口层,完成数据消息队列的排