poj1523--C - SPF(连通分量,求割点)

C - SPF

Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d
& %I64u

Submit Status

Description

Consider the two networks shown below. Assuming that data moves around these networks only between directly connected nodes on a peer-to-peer basis, a failure of a single node, 3, in the network on the left would prevent some of the still available nodes from
communicating with each other. Nodes 1 and 2 could still communicate with each other as could nodes 4 and 5, but communication between any other pairs of nodes would no longer be possible.

Node 3 is therefore a Single Point of Failure (SPF) for this network. Strictly, an SPF will be defined as any node that, if unavailable, would prevent at least one pair of available nodes from being able to communicate on what was previously a fully connected
network. Note that the network on the right has no such node; there is no SPF in the network. At least two machines must fail before there are any pairs of available nodes which cannot communicate.

Input

The input will contain the description of several networks. A network description will consist of pairs of integers, one pair per line, that identify connected nodes. Ordering of the pairs is irrelevant; 1 2 and 2 1 specify the same connection. All node numbers
will range from 1 to 1000. A line containing a single zero ends the list of connected nodes. An empty network description flags the end of the input. Blank lines in the input file should be ignored.

Output

For each network in the input, you will output its number in the file, followed by a list of any SPF nodes that exist.

The first network in the file should be identified as "Network #1", the second as "Network #2", etc. For each SPF node, output a line, formatted as shown in the examples below, that identifies the node and the number of fully connected subnets that remain when
that node fails. If the network has no SPF nodes, simply output the text "No SPF nodes" instead of a list of SPF nodes.

Sample Input

1 2
5 4
3 1
3 2
3 4
3 5
0

1 2
2 3
3 4
4 5
5 1
0

1 2
2 3
3 4
4 6
6 3
2 5
5 1
0

0

Sample Output

Network #1
  SPF node 3 leaves 2 subnets

Network #2
  No SPF nodes

Network #3
  SPF node 2 leaves 2 subnets
  SPF node 3 leaves 2 subnets

给出无向边,输入到0结束,问割点是谁,并且求出割点将图分成几个连通分量

割点的求法就是tarjan,在求出割点后用并查集找出将图分成几块,注意对于根,如果根只有一个子树,那么根不是割点,但用tarjan判断也会判断成割点,所以要特判根节点

所以,如果割点找出的分块数是1,不用输出。

输出是坑,要求每个空两个格,一个案例空一行

#include <cstdio>
#include <cstring>
#include <stack>
#include <algorithm>
using namespace std;
#define maxn 1200
struct node
{
    int u , v ;
    int next ;
} edge[1000000] ;
int head[maxn] , cnt , vis[1000000] ;
int dnf[maxn] , low[maxn] , time ;
int ans[maxn] ;
int c[maxn] , n ;
stack <int> sta;
void init()
{
    memset(head,-1,sizeof(head));
    memset(vis,0,sizeof(vis));
    memset(dnf,0,sizeof(dnf));
    memset(low,0,sizeof(low));
    memset(ans,0,sizeof(ans));
    cnt = time = n = 0 ;
}
void add(int u,int v)
{
    edge[cnt].u = u ;
    edge[cnt].v = v ;
    edge[cnt].next = head[u] ;
    head[u] = cnt++ ;
    edge[cnt].u = v ;
    edge[cnt].v = u ;
    edge[cnt].next = head[v] ;
    head[v] = cnt++ ;
}
int find1(int x)
{
    int r , k , l ;
    r = x ;
    while( r != c[r] )
        r = c[r] ;
    k = x ;
    while( k != r )
    {
        l = c[k] ; c[k] = r ; k = l ;
    }
    return r ;
}
int f(int s)
{
    int i , j , u , v , num[maxn] , sum = 0 ;
    memset(num,0,sizeof(num));
    for(i = 1 ; i <= n ; i++)
        c[i] = i ;
    for(i = 1 ; i <= n ; i++)
    {
        for(j = head[i] ; j != -1 ; j = edge[j].next)
        {
            if( edge[j].u == s || edge[j].v == s )
                continue ;
            u = find1( edge[j].u ) ;
            v = find1( edge[j].v ) ;
            if(u != v)
                c[u] = v ;
        }
    }
    for(i = 1 ; i <= n ; i++)
    {
        if( head[i] != -1 && i != s )
        {
            num[ find1(i) ]++ ;
        }
    }
    for(i = 1 ; i <= n ; i++)
        if( num[i] )
            sum++ ;
    return sum ;
}
void tarjan(int u)
{
    dnf[u] = low[u] = ++time ;
    int v, i ;
    for(i = head[u] ; i != -1 ; i = edge[i].next)
    {
        if( vis[i] ) continue ;
        vis[i] = vis[i^1] = 1 ;
        v = edge[i].v ;
        if( !dnf[v] )
        {
            sta.push(i);
            tarjan(v);
            low[u] = min( low[u],low[v] );
            if( low[v] >= dnf[u] && !ans[u] )
            {
                ans[u] = f(u);
            }
        }
        else if( dnf[v] < dnf[u] )
            low[u] = min( low[u],dnf[v] );
    }
}
int main()
{
    int u , v , temp = 0 , i;
    while(scanf("%d", &u) && u)
    {
        temp++ ;
        init();
        scanf("%d", &v);
        add(u,v);
        n = max(n,u);
        n = max(n,v);
        while(scanf("%d", &u) && u)
        {
            scanf("%d", &v);
            add(u,v);
            n = max(n,u);
            n = max(n,v);
        }
        tarjan(1);
        int flag = 0 ;
        printf("Network #%d\n", temp);
        for(i = 1 ; i <= n ; i++)
            if( ans[i] > 1 )
            {
                printf("  SPF node %d leaves %d subnets\n", i, ans[i]);
                flag = 1 ;
            }
        if( !flag )
            printf("  No SPF nodes\n\n");
        else
            printf("\n");
    }
    return 0;
}
时间: 2024-11-17 02:07:42

poj1523--C - SPF(连通分量,求割点)的相关文章

POJ1523 SPF 【求割点Tarjan】

SPF Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6131   Accepted: 2814 Description Consider the two networks shown below. Assuming that data moves around these networks only between directly connected nodes on a peer-to-peer basis, a

POJ 1144 Network(无向图连通分量求割点)

题目地址:POJ 1144 求割点.推断一个点是否是割点有两种推断情况: 假设u为割点,当且仅当满足以下的1条 1.假设u为树根,那么u必须有多于1棵子树 2.假设u不为树根.那么(u,v)为树枝边.当Low[v]>=DFN[u]时. 然后依据这两句来找割点就能够了. 代码例如以下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include &

POJ-1523 SPF(tarjan求割点)

题目链接:http://poj.org/problem?id=1523 题目大意:有多组数据,要你求出每组数据的割点,并输出这个割点所在的块数 算法实现: 割点是什么:一个无向连通图去掉一个点及与这个点相连的后,这个无向图分为多个互不连通的子块,这个点则称为割点 时间戳是什么:在搜索时访问的最早时间 算法:tarjan算法 维护dfn[u]表示u的时间戳 low[u]表示u点所能回到的最早的祖先的时间戳 cut[u]表示u点所属于的块的数量 判断割点的条件  dfn[u]>=low[v]  //

【POJ1523】SPF tarjan求点-双连通分量 裸题模板题

转载请注明出处:http://blog.csdn.net/vmurder/article/details/42671865 其实我就是觉得原创的访问量比未授权盗版多有点不爽233... 题意:求哪些点是割点,割掉以后能把图分成几块. 太水不欲发题解. tarjan就好,不懂看代码. 代码: #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define

poj 1144 Network【双连通分量求割点总数】

Network Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11042   Accepted: 5100 Description A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N

poj 1523 SPF 无向图求割点

SPF Description Consider the two networks shown below. Assuming that data moves around these networks only between directly connected nodes on a peer-to-peer basis, a failure of a single node, 3, in the network on the left would prevent some of the s

连通分量模板:tarjan: 求割点 &amp;&amp; 桥 &amp;&amp; 缩点 &amp;&amp; 强连通分量 &amp;&amp; 双连通分量 &amp;&amp; LCA(最近公共祖先)

PS:摘自一不知名的来自大神. 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合. 3.点连通度:最小割点集合中的顶点数. 4.割边(桥):删掉它之后,图必然会分裂为两个或两个以上的子图. 5.割边集合:如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合. 6.边连通度:一个图的边连通度的定义为,最

UESTC 900 方老师炸弹 --Tarjan求割点及删点后连通分量数

Tarjan算法. 1.若u为根,且度大于1,则为割点 2.若u不为根,如果low[v]>=dfn[u],则u为割点(出现重边时可能导致等号,要判重边) 3.若low[v]>dfn[u],则边(u,v)为桥(封死在子树内),不操作. 求割点时,枚举所有与当前点u相连的点v: 1.是重边: 忽略 2.是树边: Tarjan(v),更新low[u]=min(low[u],low[v]); 子树个数cnt+1.如果low[v] >= dfn[u],说明是割点,割点数+1 3.是回边: 更新lo

(转)Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)

本文转载自:http://hi.baidu.com/lydrainbowcat/item/f8a5ac223e092b52c28d591c 作者提示:在阅读本文之前,请确保您已经理解并掌握了基本的Tarjan算法,不会的请到http://hi.baidu.com/lydrainbowcat/blog/item/42a6862489c98820c89559f3.html阅读.   基本概念:   1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如

Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)【转】【修改】

基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合. 3.点连通度:最小割点集合中的顶点数. 4.割边(桥):删掉它之后,图必然会分裂为两个或两个以上的子图. 5.割边集合:如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合. 6.边连通度:一个图的边连通度的定义为,最小割边集合中的边数.