LTE物理传输资源(2)-频带、信道带宽和频点号EARFCN

1.频带(Band)

所谓频带,是指无线解码器在规定的失真度和额定输出功率条件下的工作频带宽度,指代的是一个频率的范围或者频谱的宽度,即无线解码器的最低工作频率至最高工作频率之间的范围,单位是Hz。为了方便起见,在LTE中,使用数字1-43来表示不同的频带(36101-V10.21.0版本协议),从而指代不同的频率范围。

协议36101规定了目前LTE所有的频带、该频带的频率范围和LTE制式,如下图所示。需要注意的是,频带1-32的上下行频率范围是不重叠的,即上行和下行在不同的频点中传输数据,这种频带也称为“成对频带”(Paired Frequency Band),预留给FDD使用。频带33-43的上下行频率范围一致,这种频带也称为“非成对频带”(Unpaired
Frequency Band),预留给TDD使用。

目前中国移动、联通、电信三家运营商使用的频带范围如下表所示。

其中TDD的分配情况为:

FDD的分配情况为:

从上述运营商的频谱使用表格中可以看到,用作TDD制式的集中在39-41这些高频带中,这种分配既有优点也有缺点。优点是目前其他的无线制式并不在高频带使用,因此干扰较少,同时因高频的频谱资源丰富,也能拿到较多的频谱带宽;缺点就是衰减快。目前我国已经分配的频谱资源情况如下表所示(该表来源于知乎的Fega)。

2.信道带宽(Channel Bandwidth)

信道带宽限定了允许通过该信道的上下限频率,也即限定了一个频率通带。在一个频带Band中,可以灵活分配若干个不同的信道带宽。LTE系统支持信道带宽灵活可变,有6种可以配置,分别是1.4MHz,3MHz,5MHz,10MHz,15MHz,20MHz。较低的带宽1.4MHz和3MHz,可以方便CDMA2000使用的频谱迁移到LTE,同时帮助促进GSM和TD-SCDMA向LTE的迁移。规定多种带宽的目的是为了适应不同频率的使用场景,比如有些时候可用的频带不足10MHz,那么就可以将LTE系统配置成5MHz使用。

不是所有的信道带宽都可以用作传输数据的资源,在信道带宽的两边会预留部分用于保护带宽,如下图示意。以20MHz带宽为例,一个RB占用12个子载波,每个子载波占15K,那么20MHz的带宽,如果全部用作传输数据的RB的话,可以有110个。但实际进行频谱发射的时候,不可能是一个理论上的矩形窗口,在信道带宽的两个边缘,不可避免的会出现斜边(发射信号功率滚降)。除了1.4MHz带宽之外的所有信道带宽,用于传输资源的RB块占用了90%的信道带宽,因而对于实际的20MHz带宽,可以用来传输数据的RB资源是100个。

每种带宽用于数据传输的资源RB个数如下所示:

3GPP也规定了不同频带中可以使用的带宽类型,如下表所示。对于目前中移动、联通、电信使用的TDD频带39、40、41来说,支持的带宽是5MHz、10MHz、15MHz和20MHz。

3.载波频点号(EARFCN)

为了唯一标识某个LTE系统所在的频率范围,仅用频带和信道带宽这两个参数是无法限定的,比如中移动的频带40占了50M频率范围,而LTE最大的信道带宽是20M,那么在这个50M范围里是没有办法限定这个20M具体在什么位置,这个时候就要引入新的参数:载波中心频率Fc(简称载波频率)。

通过上图可以看出,通过频带Band、信道带宽Bandwidth和载波频率Fc这三个值,就可以唯一确定LTE系统的具体频率范围了。由于载波频率Fc是一个浮点值,与整形类型相比,不好用于空口的传输,因此在协议制定的时候,使用载波频点号来表示对应的载波频率Fc。

载波频点号,又叫EARFCN,全称是E-UTRA Absolute Radio Frequency Channel Number,绝对无线频率信道号,使用16bit表示,范围是0-65535。因为要用EARFCN来指代载波频率Fc,因此这两个参数之间必须一一对应,可以互相转换。载波频率Fc和EARFCN之间的关系式如下所示,其中FdlFul分别表示下行和上行具体的中心载波频率,NdlNul则分别表示下行和上行的绝对频点号。

举例说明怎么计算:比如当前LTE系统使用的是频带40,载波频点是2320MHz,那么查表可以得到Fdl_low=2300MHz,Noffs_dl=38650,Ful_low=2300MHz,Noffs_ul=38650。那么代入公式(注意代入时MHz不要转成Hz),可以得到上下行的载波频点号均是38850。

参考文献:

(1)3GPP TS 36.101 V10.21.0 (2015-12) User Equipment (UE) radio transmission and reception

(2)《4G LTE/LTE-Advanced for Mobile Broadband》

时间: 2024-10-06 17:54:34

LTE物理传输资源(2)-频带、信道带宽和频点号EARFCN的相关文章

LTE物理传输资源(3)-时频资源

在博文<LTE物理传输资源(1)-帧结构和OFDM符号>里提到了LTE的帧结构和时域上的OFDM符号,本文继续这个话题,继续描述子帧和时隙结构里的其他内容. 1.资源粒度 为提高终端的功率效率,延长电池的续航时间,以及设备成本上的考虑,LTE上行链路采用SC-FDMA(Single Carrier Frequency Division Multiple Access,单载波频分多址)技术.在时域上,最小的资源粒度是一个OFDM符号(上行是SC-FDMA符号.下文统一称为OFDM符号).在频域上

LTE物理传输资源(1)-帧结构

写完上一篇博文<LTE小区搜索-物理小区ID和同步信号PSS.SSS>之后,本想继续写系统信息相关内容的,但发现写的时候必不可少的要涉及PDCCH.PHICH等内容,而这些内容目前还没有系统的写.所以接下来的几篇博文,将写一些需要掌握的LTE背景知识. 本文描述的是LTE的帧结构相关内容. 关于帧结构,之前的博文里零散的提到过一些,比如博文<LTE-TDD随机接入过程(2)-前导码Preamble的格式与时频位置>,里面在讲解前导码格式的时候,提到了每个子帧的长度是30720Ts,

WCF 内置绑定在不同的传输安全模式下的信道层

basicHttpBinding Transport安全模式信道层 Message安全模式信道层 TransportWithMessageCredential安全模式信道层 TransportCredentialOnly安全模式信道层 webHttpBinding Transport安全模式信道层 TransportCredentialOnly安全模式信道层 wsHttpBinding/ws2007HttpBinding Message安全模式信道层 Transport安全模式信道层 Trans

LTE下行物理层传输机制(9)-集中式和分布式资源映射

LTE系统里,RB资源的动态调度是在eNB侧实现的,这里的"RB资源"实际上是特指虚拟RB(Virtual RB)而不是物理RB(Physical RB).VRB是MAC层在调度的时候使用的,属于逻辑上的概念,而PRB是物理层在实际映射RE资源的时候需要使用的,属于实际物理意义上的概念.VRB和PRB之间,存在着不同的映射关系:最简单的映射关系就是VRB的位置和PRB的位置是相同的,它们之间是一一对应的:另外一种复杂点的关系就是VRB和PRB并不是一一对应的,但是可以依赖某种特定的映射

LTE下行物理层传输机制(1)-天线端口Antenna Port和小区特定参考信号CRS

上篇博文<LTE物理传输资源(3)-时频资源>的最后提到了PCFICH等几种下行物理信道,这篇博文本来想写PCFICH信道的,但在准备写PCFICH的时候,发现需要用到天线端口的相关内容,而这些内容目前还没有写.所以本文就先写天线端口和下行参考信号的相关内容. 1.天线端口(Antenna Port)和参考信号(Reference Signal)的关系 天线端口是一个逻辑上的概念,它与物理天线并没有一一对应的关系.在下行链路中,天线端口与下行参考信号(Reference signal)是一一对

beacon帧字段结构最全总结(二)——HT字段总结

一.HT Capabilities HT Capabilities:802.11n的mac层给802.11的mac层加入了高吞吐量单元.所有新加的802.11n功能都是通过管理帧中的HT单元才得以实现,总体如下 抓包中显示,可见对HT的解析,omnipeek还是可行的 (一)HT Capability Info 不同的软件解析出来顺序可能不同,wireshark更贴近现实,而omnipeek则是顺序相反,不过解析的内容都是一样的 1.L-SIG TXOP保护: Legacy Signal Tra

KCP TCP是为流量设计的(每秒内可以传输多少KB的数据),讲究的是充分利用带宽。而KCP是为流速设计的(单个数据包从一端发送到一端需要多少时间)

http://www.skywind.me/blog/archives/1048 KCP是一个快速可靠协议,能以比 TCP浪费10%-20%的带宽的代价,换取平均延迟降低 30%-40%,且最大延迟降低三倍的传输效果.纯算法实现,并不负责底层协议(如UDP)的收发,需要使用者自己定义下层数据包的发送方式,并以 callback的方式提供给 KCP.连时钟都需要外部传递进来,内部不会有任何一次系统调用. 整个协议只有 ikcp.h, ikcp.c两个源文件,可以方便的集成到用户自己的协议栈中.也许

总线带宽

关于带宽概念之前不是太熟悉,特百度,转载如下: 两种概念 如果从电子电路角度出发,带宽(Bandwidth)本意指的是电子电路中存在一个固有通频带,这个概念或许比较抽象,我们有必要作进一步解释.大家都知道,各类复杂的电子电路无一例外都存在电感.电容或相当功能的储能元件,即使没有采用现成的电感线圈或电容,导线自身就是一个电感,而导线与导线之间.导线与地之间便可以组成电容——这就是通常所说的杂散电容或分布电容: 不管是哪种类型的电容.电感,都会对信号起着阻滞作用从而消耗信号能量,严重的话会影响信号品

LTE学习之路(8)——信令流程

1 在LTE中,需要识别3个主要的同步需求 符号和帧定时的捕获,通过它来确定正确的符号起始位置(如设置DFT窗位置): 载波频率同步,需要它来减少或消除频率误差的影响(注:频率误差是由本地振荡器在发射端和接收端间的频率不匹配和UE移动导致的多普勒偏移造成的): 采样时钟的同步 2 两个物理信号 主同步信号(PSS,Primary Synchronization Signal) 和辅同步信号(SSS,Secondary Synchronization Signal) 注:对于这两个信号的检测,不仅