纯前端实现人脸识别-提取-合成

原文地址前端路上, 转载请注明出处。

最近火爆朋友圈的军装照H5大家一定还记忆犹新,其原理是先提取出照片中的面部,然后与模板进行合成,官方的合成处理据说由天天P图提供技术支持,后端合成后返回给前端展示,形式很新颖效果也非常好,整个流程涉及的人脸识别和图像合成两项核心技术在前端都有对应的解决方案,因此理论上前端也可以完成人脸识别-提取-合成整个流程,实现纯前端的军装照H5效果。

前端人脸识别

首先需要的是人脸识别,这个一听就觉得高大上的东西原理并不深奥,无非是用人的面部特征规则对图像进行匹配和识别,这项工作前端虽然可以实现,但前端实现基本就只能依据内置规则库进行匹配,这个库的质量就决定了识别质量,而通常更成熟的方案是引入机器学习,让程序不断自我修正和提高,进一步提高识别率,机器学习的前端库倒是也有,但把这两者结合起来的还没发现,因此对前端人脸识别的准确率不要报太高期望。

现有的前端人脸识别库不算多,这里我们选择的是效果相对好点的trackingjs,这个类库功能非常强大,库如其名,它可以完成各种追踪类的图像处理任务,人脸识别只是其众多功能之一,而且通过选配插件,还可以精确识别眼睛、鼻子等五官的位置,貌似稍微折腾一下也可以实现美图秀秀的效果。

这里我们只用trackingjs实现面部识别,初始化一个面部识别任务的代码如下:

12345678910111213
//实例化var tracker = new tracking.ObjectTracker([‘face‘]);//识别回调tracker.on(‘track‘, function(event) {    if (!event.data.length) {        return console.log(‘画面中没有人脸‘);    }    event.data.forEach(function(rect, i) {        console.log(rect);//单个面部数据    })})//配置参数...

这样一个面部识别任务就初始化完成了,调用方式如下:

12
tracking.track(‘#img‘, tracker);//其中‘#img‘参数是目标图像的选择器

在识别回调中event.data就是数组格式的面部数据,如果长度为0则表示图像中没有人脸或者识别失败,如果识别成功,单个面部数据的格式如下:

123456
{    x: number,          //面部位于原图x轴方向位置    y: nuber,           //面部位于原图y轴方向位置    width:number,       //面部区域宽度    height:nubmer       //面部区域高度}

有了这个面部数据就可以很容易的将该区域从原图中提取出来,前端当然就用canvas啦,示例如下:

1234567
var img = document.getElementById("img");var faceCtx = document.getElementById("mycanvas").getContext(‘2d‘);

var theFace = ...; //假设我们识别到了theFace

//使用drawImage()方法将面部绘制出来faceCtx.drawImage(img, theFace.x, theFace.y, theFace.width, theFace.height, 0, 0, theFace.width, theFace.height);

到这里我们已经实现了面部识别 + 提取,而且代码量也没多少,其实这里面有个小坑要在实践中才会发现,那就是trackingjs的配置,文档中能找到4个跟识别有关的配置,分别是:

1234
setClassifiers(classifiers)setEdgesDensity(edgesDensity)setScaleFactor(scaleFactor)setStepSize(stepSize)

看不懂吧,我也看不懂,而且文档中对他们没有任何有用的说明,在测试中我只使用了后两个配置,翻译过来分别是”比例因子”和”步长”,经过枯燥的人肉测试发现,这两个参数的有效取值范围分别在1 - 21.1 - 2,其中setStepSize不能为1,否则会浏览器会卡死,所以从1.1开始取值,取值超过2也可以,但识别成功的概率就很低了。通过调整这两个参数绝大多数图像都可以成功识别,唯独对面部大特写很难识别,这可能需要配合另外两个参数吧,我实在没耐心继续人肉测试下去了,感兴趣的自己回去玩吧。

前端图像处理

经过上一步的识别+提取我们已经得到了面部图像,要实现合成军装照效果我们还需要对面部图像进行处理,使色调与模板一致,将来才能毫无违和感的融合在一起,具体到军装照这个例子我们需要将面部重新着色,并达到”做旧”的老照片效果,如果用PS想必大家都会,但在前端怎么实现呢?

这里我们需要借助腾讯前端团队出品的AlloyImage,这是一个堪称前端PS的前端图像处理类库,比如要实现上述效果,我们只需要这样:

123456789
var faceImg = document.getElementById("theFace");faceImg.loadOnce(function() {    AlloyImage(this).act("灰度处理").add(        AlloyImage(this.width, this.height, "#808080")        .act("高斯模糊", 4)        .act("色相/饱和度调节", 22, 45, 0, true),        "叠加"    ).replace(this);}

然后你就得到了一个做旧的人脸,还是非常简单的,AlloyImage的使用基本可以说是傻瓜化,感兴趣的就自己花个五分钟去看下官方文档吧,这里不再赘述。

然后就要说一下我们这个图像处理和人家天天P图的差距了,虽然我们得到了理想的色调,但要想把随便一张人脸与特定模板做合成,有两件事必不可少。首先是面部角度矫正,如果模板是正的而你的照片是歪的,直接暴力拼接肯定很违和,所以需要先识别出面部角度,并纠正到指定角度;然后是面部中心定位,因为人脸识别的结果提取出来后不一定是以面部中心为中心的,所以在合成之前要识别出面部中心线,并以此为依据与模板进行定位。然而这些我们都没有,所以我们只能对输入的图像的要求更高,如果输入了嘴歪眼斜的图片,结果就只能尴尬了。

最后的图片合成部分就更简陋了,先将处理好的面部画到画布指定位置,然后将抠好图的脸部透明png模板铺在上面,完成。实际过程中需要处理一些小问题,比如要根据模板的面部尺寸将面部图像缩放到合适的尺寸;抠模板时要将边缘模糊处理,而且尽量保留模板本来的面部轮廓,只将五官抠掉。即便这样,合成结果还是很容易穿帮,不过纯前端处理也没有更好的办法了。

效果展示

好了,说的再多不如看个例子,示例提供三种图片输入源,分别是本地图片、远程图片、内置示例。其中内置的图片大部分是提前在PS中纠正过角度的,而且内置图片会自动匹配到我事先调校好的参数,不出意外可以直接识别出人脸;如果选择本地图片作为图片源,最好选择头部姿态垂直的正面照,同时参考内置图片的 参数设置调节参数,一次识别不成功很正常,需要多调几次;也可以使用远程图片识别,但因为canvas受到跨域策略影响,远程图片只能识别不能提取和合成。

示例:纯前端军装照合成

后记

最初是抱着好奇的心态开始捣鼓这个项目的,虽然最终的合成效果远远达不到生产要求,但整个示例撸下来后对人脸识别和图片处理技术都有了基本的认识,对canvas操作中一些细节问题的解决也略微补足了一下这方面的知识空白,算略有收获吧。

时间: 2024-10-19 16:25:36

纯前端实现人脸识别-提取-合成的相关文章

「圣诞特辑」纯前端实现人脸识别自动佩戴圣诞帽

在线体验地址:hksite.cn/prjs/christmashat 源码地址:https://github.com/hk029/christmas-hat 写在开头 叮叮当,叮叮当,吊儿个郎当,一年一度的圣诞节到咯,我不由的回想起了前两年票圈被圣诞帽支配的恐惧.打开票圈全是各种@官方求帽子的: 票圈头像也瞬间被圣诞帽攻陷: 在那段时间,你没一顶圣诞帽还真不好意思发票圈 各种戴帽子的软件也如雨后春笋般浮现出来,不管是小程序还是美图软件无一例外的都增加了戴圣诞帽的功能.但是对于懒人的我来说,自己调

人脸识别提取手机相册内人物充当数据集,身份识别学习(草稿)

未写完 采用C++,opencv+opencv contrib 4.1.0 对手机相册内人物opencv人脸识别,身份识别学习 最近事情多,介绍就先不介绍了 photocut.c #include "pch.h" #include <opencv2\opencv.hpp> #include <vector> #include "CameraFace.h" #include "PhotoFace.h" #include &l

实验报告: 人脸识别方法回顾与实验分析 【OpenCV测试方法源码】

趁着还未工作,先把过去做的东西整理下出来~   Github源码:https://github.com/Blz-Galaxy/OpenCV-Face-Recognition (涉及个人隐私,源码不包含测试样本,请谅解~) 对实验结果更感兴趣的朋友请直接看 第5章 [摘要]这是一篇关于人脸识别方法的实验报告.报告首先回顾了人脸识别研究的发展历程及基本分类:随后对人脸识别技术方法发展过程中一些经典的流行的方法进行了详细的阐述:最后作者通过设计实验对比了三种方法的识别效果并总结了人脸识别所面临的困难与

基于javaweb人脸识别注册登录系统

---恢复内容开始--- 现在是2019年,人脸识别技术已经相当成熟了,百度自2017年发布人脸识别技术,已经被广泛应用,不管从现在的iphoneX掀起的面部解锁到手机应用端的各种人脸认证,这一技术已经悄然升息的方便了我们的生活,但是在web端注册登录缺很少用到刷脸登录,第一个最主要的原因可能是安全隐私方面人们对大数据时代的误解.不多废话,下面通过调用百度api来实现人脸注册及登录, Web端人脸识别主要有三个技术思路: 1.前端的人脸识别,例如使用Tensorflow.js, 2.后台人脸识别

提取文件夹中所有xml文件中的数据到txt(为人脸识别级联器使用的txt做准备)

[知识点]pugixml框架提取多个相同节点内容.遍历文件夹.保存到txt. xml文件由labelImg.exe软件标定图像生成.此博客把xml文件内容提取到txt中,为人脸识别opencv_annotation.exe.opencv_createsamples.exe.opencv_traincascade.exe服务 所有xml放到一个文件夹中,代码功能:遍历此文件夹,提取xml内容,保存到txt #include"pugixml\pugixml.hpp" #include<

人脸识别(face recognition)

一.前述 1. 发展 以往的人脸识别主要是包括人脸图像采集.人脸识别预处理.身份确认.身份查找等技术和系统.现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测.行人跟踪.甚至到了动态物体的跟踪.由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理.而且算法已经由以前的Adaboots.PCA等传统的统计学方法转变为CNN.RCNN等深度学习及其变形的方法.现在也有相当一部分人开始研究3维人脸识别识别,这种项目目前也受到了学术界.工业界和国家的支持. 之后的内容主要参考了下面的链接,

人脸识别算法初次了解

这是转载别人的帖子,认为好,大家一块学习http://www.cnblogs.com/guoyiqi/archive/2011/07/28/2129300.html 前言 在写此文之前,先扯点东西.我一直在找一个东西,让我思考,让我久久的深陷当中,永久的,不断的思考.现在,我意识到,这个东西即是算法.我一直在找一家合适的公司,能让我的兴趣无比放肆的,自由驰骋. ok,由于在一家公司的面试过程中,面试官提到过这个人脸识别算法,由于在此之前,未曾有过了解,所以,特作此番学习与研究.有不论什么问题,欢

[Android]虹软arcface人脸识别SDK引擎使用总结

虹软开放了人脸识别的SDK引擎(免费的哦),刚好有Android版的,就体验了一波.下面来说说Android版的SDK使用心得: ArcFace 虹软人脸认知引擎简介 目前开放的版本有人脸比对(1:1)和人脸检索(1:N),根据应用场景可选择 人脸检索分为小型网络(检测100人内),中型网络(1000人内),大型网络(需联系虹软官方) 目前开放的功能有人脸比对,人脸识别,人脸追踪 关于如何使用 在官网下载SDK引擎后集成到你的项目中,然后我在此举例说下其中一个sample:人脸识别 官方samp

基于百度AI开放平台的人脸识别及语音合成

基于百度AI的人脸识别及语音合成课题 课题需求 (1)人脸识别 在Web界面上传人的照片,后台使用Java技术接收图片,然后对图片进行解码,调用云平台接口识别人脸特征,接收平台返回的人员年龄.性别.颜值等信息,将信息返回到Web界面进行显示. (2)人脸比对 在Web界面上传两张人的照片,后台使用Java技术接收图片,然后对图片进行解码,调用云平台接口比对照片信息,返回相似度. (3)语音识别 在Web页面上传语音文件,判断语音文件格式,如果不是wav格式进行转码处理,然后调用平台接口进行识别,