「递归」求第n个斐波纳契数

用「递归」方法求第n个斐波纳契数

 1 #include<stdio.h>
 2 long int dog(int p)
 3 {
 4     if(p>1)
 5         return dog(p-1)+dog(p-2);
 6     else if (p==1||p==0)
 7         return 1;
 8 }
 9 int main()
10 {
11     printf("您要求第几个斐波纳契数:\n");
12     int n;
13     scanf("%d",&n);
14     printf("第%d个斐波纳契数是:\n%ld\n",n,dog(n-1));
15 }
时间: 2024-10-13 01:47:50

「递归」求第n个斐波纳契数的相关文章

斐波纳契数之组合

斐波纳契数之组合 Time Limit: 1000 MS Memory Limit: 65535 K Total Submit: 145(66 users) Total Accepted: 83(65 users) Rating: Special Judge: No Description 斐波那契数列是这么定义的:F0 = 1, F1 = 1, F2 = F1 + F0,··· Fn = Fn-1 + Fn-2(n>=2),对于每一项,它们都是斐波那契数. 现在给出一个整数d,求一个组合使得a

poj 3070 Fibonacci 【矩阵快速幂 求第N个斐波那契数%1000】

Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11123   Accepted: 7913 Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn ? 1 + Fn ? 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequenc

非递归和递归分别实现求第n个斐波那契数。

菲波那切数列为:0 1 1 2 3 5 8 13 21 34... 规律:从第三个数字起后面的每一个数字都是前两个数字的和. 非递归算法: 1 #include<stdio.h> 2 int main() 3 { 4 //数列:0 1 1 2 3 5 8 13 21 34 5 //序号:1 2 3 4 5 6 7 8 9 10 6 int a = 0; 7 int b = 1; 8 int c = a + b; 9 int num = 0;//num为所求的第几项数列. 10 scanf(&q

斐波那契数与二分法的递归与非递归算法及其复杂度分析

1. 什么是斐波那契数? 这里我借用百度百科上的解释:斐波那契数,亦称之为斐波那契数列(意大利语: Successione di Fibonacci),又称黄金分割数列.费波那西数列.费波拿契数.费氏数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.--在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=Fn-1+Fn-2(n>=2,n∈N*),用文字来说,就是斐波那契数列列由 0 和 1 开始,之后的斐波那契数列系数就由之前的两数相加.特别指出:0不是第一

php 两种方式实现求 斐波那契数

使用递归方式. //使用递归方式求斐波那契数 public function fb($n){ // if( $n <=2){ return 1; }else{ return fb($n-1) + fb($n-2); } } 使用递推方式. //使用递推方式求斐波那契数 public function fb2($n){ // if( $n <=2){ return 1; } $t1 = 1;$t2 = 1; for($i=3;$i<$n;$i++){ $temp = $t1; $t1 =

【C++】【斐波那契】求第几个斐波那契数字。

首先在头文件 whichfibonaccinumber.h 中写了一个使用加法的解法.没有验证输入数字是否小于0. #ifndef WHICHFIBONACCINUMBER_H_ #define WHICHFIBONACCINUMBER_H_ typedef unsigned long long uint64; // 简写unsigned long long,因为是64位,写作 uint64(意为:无符号int 64位) // max == 18446744073709551615,尽量保证不溢

算法笔记_001:斐波那契数的多种解法

本篇文章解决的问题来源于算法设计与分析课程的课堂作业,主要是运用多种方法来计算斐波那契数.具体问题及解法如下: 一.问题1: 问题描述:利用迭代算法寻找不超过编程环境能够支持的最大整数的斐波那契数是第几个斐波那契数.(Java: 231-1 for int, 263-1 for long) 解决方案:针对问题1,此处要使用迭代法来解决,具体实现代码如下: //用迭代法寻找编程环境支持的最大整数(int型)的斐波那契数是第几个斐波那契数 public static int max_int_iter

用安卓实现斐波那契数和最近点对问题

目录 1 运行效果展示 2 具体编码 2.1 斐波那契数问题 2.2 最近点对问题 1 运行效果展示 2 具体编码 2.1 斐波那契数问题 具体问题即解决方案请参考本人另一篇博客:算法笔记_001:斐波那契数的多种解法 功能界面布局main_one.xml文件对应界面图: 其源码: <?xml version="1.0" encoding="utf-8" ?> <GridLayout xmlns:android="http://schem

LintCode Python 入门级题目 斐波纳契数列

原题描述: 查找斐波纳契数列中第 N 个数. 所谓的斐波纳契数列是指: 前2个数是 0 和 1 . 第 i 个数是第 i-1 个数和第i-2 个数的和. 斐波纳契数列的前10个数字是: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 ... 题目分析: 开始的想法,通过递归实现输出fib(n-1)+fib(n-2)的值计算,原理正确,算法复杂度高,导致运行时间超过lintcode限制: class Solution: # @param n: an integer # @retur