bzoj 1096 [ZJOI2007]仓库建设(关于斜率优化问题的总结)

1096: [ZJOI2007]仓库建设

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 3234  Solved: 1388
[Submit][Status][Discuss]

Description

L
公司有N个工厂,由高到底分布在一座山上。如图所示,工厂1在山顶,工厂N在山脚。
由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天
之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。由于地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已
有成品Pi件,在第i个工厂位置建立仓库的费用是Ci。对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设置在
山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,假设一件产品运送1个单位距离的费用是1。假设建立
的仓库容量都都是足够大的,可以容下所有的产品。你将得到以下数据:? 工厂i距离工厂1的距离Xi(其中X1=0); ?
工厂i目前已有成品数量Pi; ? 在工厂i建立仓库的费用Ci; 请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。

Input

第一行包含一个整数N,表示工厂的个数。接下来N行每行包含两个整数Xi, Pi, Ci, 意义如题中所述。

Output

仅包含一个整数,为可以找到最优方案的费用。

Sample Input

3
0 5 10
5 3 100
9 6 10

Sample Output

32

HINT

在工厂1和工厂3建立仓库,建立费用为10+10=20,运输费用为(9-5)*3 = 12,总费用32。如果仅在工厂3建立仓库,建立费用为10,运输费用为(9-0)*5+(9-5)*3=57,总费用67,不如前者优。

【数据规模】

对于100%的数据, N ≤1000000。 所有的Xi, Pi, Ci均在32位带符号整数以内,保证中间计算结果不超过64位带符号整数。

Source

【思路】

斜率优化+DP。

转移方程式:

f[i]=min{ f[j]+p[j+1](x[i]-x[j+1])+p[j+2]*(x[i]-x[j+2]+…p[i](x[i]-x[i]))+C[i] }

=min{ f[j]-(Cpx[i]-Cpx[j])+(Cp[i]-Cp[j])*x[i] +C[i]}

=min{ (f[j]+Cpx[j])-(X[i]*p[j]) }+C[i]-Cpx[i]+X[i]*Cp[i]

其中定义Cpx[]表示p*X的前缀和,Cp表示p的前缀和。

设y(j)=f[j]+Cpx[j],a(i)=X[i],x(j)=Cp[j],则有

f[i]=(min p = y(j)-a(i)*x(j)) +C[i]-Cpx[i]+X[i]*Cp[i]

括号中的式子可以看作一条直线,其中a(i)为i下的常数,x(j)与y(j)都可以在常数时间下确定,而且x与直线斜率都是单调递增的,如果以x y建立坐标轴的话,则问题变成已知一条直线的斜率和一堆点,求y轴上的最小截距。

可以通过维护一个下凸包完成,构造一个单调队列,对应该斜率下的直线,从队首维护最优性(p的大小),从队尾维护凸包。

如下:

/////////////////
//根据当前直线计算p 维护队首的最优性
while(L<R && q[L].y-q[L].x*X[i] >= q[L+1].y-q[L+1].x*X[i]) L++;

///////////////

now.x=Cp[i];                                                 //计算当前点
now.y=q[L].y-q[L].x*X[i]+C[i]+X[i]*Cp[i];
while(L<R && cross(q[R-1],q[R],now)<=0) R--;                 //维护与插入当前点
q[++R]=now;

【代码】

 1 #include<cstdio>
 2 #include<iostream>
 3 using namespace std;
 4
 5 typedef long long LL;
 6 const int N = 1000000+10;
 7 struct point { LL x,y;
 8 }q[N],now;
 9 int n,L,R;
10 LL p,Cpx[N],Cp[N],C[N],X[N],f[N];
11
12 LL cross(point a,point b,point c) {
13     return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
14 }
15 void read(LL& x) {
16     char c=getchar(); while(!isdigit(c)) c=getchar();
17     x=0; while(isdigit(c)) x=x*10+c-‘0‘ , c=getchar();
18 }
19 int main() {
20     scanf("%d",&n);
21     for(int i=1;i<=n;i++) {
22         read(X[i]),read(p),read(C[i]);
23         Cp[i]=Cp[i-1]+p; Cpx[i]=Cpx[i-1]+p*X[i];
24     }
25     for(int i=1;i<=n;i++) {
26         while(L<R && q[L].y-q[L].x*X[i] >= q[L+1].y-q[L+1].x*X[i]) L++;
27         now.x=Cp[i];
28         now.y=q[L].y-q[L].x*X[i]+C[i]+X[i]*Cp[i];
29         //f[i]=now.y-Cpx[i];
30         while(L<R && cross(q[R-1],q[R],now)<=0) R--;
31         q[++R]=now;
32     }
33     printf("%lld",q[R].y-Cpx[n]);
34     return 0;
35 }

folding code

时间: 2024-10-20 03:35:12

bzoj 1096 [ZJOI2007]仓库建设(关于斜率优化问题的总结)的相关文章

BZOJ 1096: [ZJOI2007]仓库建设( dp + 斜率优化 )

dp(v) = min(dp(p)+cost(p,v))+C(v) 设sum(v) = ∑pi(1≤i≤v), cnt(v) = ∑pi*xi(1≤i≤v), 则cost(p,v) = x(v)*(sum(v)-sum(p)) - (cnt(v)-cnt(p)) 假设dp(v)由dp(i)转移比dp(j)转移优(i>j), 那么  dp(i)+cost(i,v) < dp(j)+cost(j,v) 即 dp(i)+x(v)*(sum(v)-sum(i))-(cnt(v)-cnt(i)) <

BZOJ 1096 [ZJOI2007]仓库建设(斜率优化DP)

[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1096 [题目大意] 有个斜坡,有n个仓库,每个仓库里面都有一些物品,物品数目为p,仓库位置为x,修缮仓库需要的费用为c,现在下雨了,之后修缮的仓库才能放东西,别的地方的仓库要运东西过来,但是只能往比它地势低的运,问所有物品得到保障的最小代价. [题解] 显然可以从高处往低处做DP,dp[i]=min(dp[j]+cost(i,j)) 我们记s[i]为p[i]的前缀和,b[i]为x[i

斜率优化专题5——bzoj 1096 [ZJOI2007]仓库建设 题解

[原题] 1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 1998  Solved: 816 [Submit][Status] Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚. 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决

【BZOJ 1096】 [ZJOI2007]仓库建设 (斜率优化)

1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3940  Solved: 1736 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏.由

BZOJ 1096 [ZJOI2007]仓库建设 斜率优化dp

1096: [ZJOI2007]仓库建设 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=1096 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚. 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场

边坡优化主题5——bzoj 1096 [ZJOI2007]仓库建设 解决问题的方法

[原标题] 1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 1998  Solved: 816 [id=1096" style="color:blue; text-decoration:none">Submit][Status] Description L公司有N个工厂,由高究竟分布在一座山上. 如图所看到的,工厂1在山顶.工厂N在山脚. 因为这座山处于高原内陆地区(干燥少雨),

bzoj 1096: [ZJOI2007]仓库建设 斜率優化

1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2242  Solved: 925[Submit][Status] Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚. 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工

BZOJ 1096 ZJOI2007 仓库建设 斜率优化

题目大意:给定n个厂房,在其中一些建仓库,一个点如果没有仓库就要把仓库运到右侧的仓库中,求最小花销 很简单的斜率优化--之前刷斜率优化的时候怎么居然把这道题漏了 令f[i]为在i点建厂使i之前的货物全部安置的最小花销 则有 公式编辑器就是爽啊~ 令sump[i]为p[i]的前缀和 令sumxp[i]为p[i]*x[i]的前缀和 化简有 f[j] + sumxp[j] = x[i]*sump[j] + sumxp[i] - x[i]*sump[i] - C[i] + f[i] 其中 X[j]=su

bzoj 1096: [ZJOI2007]仓库建设

Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内 陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象 部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏.由于 地形的不同,在不同工厂建立仓库的费用可能是不同的.第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库 的费用是Ci.对于没有建立仓库的工厂,其产品应被运往其他的仓库