Docker中Hadoop集群搭建

使用腾讯云主机,docker构建集群测试环境。

环境

1、操作系统: CentOS 7.2 64位

网路设置

hostname IP
cluster-master 172.18.0.2
cluster-slave1 172.18.0.3
cluster-slave2 172.18.0.4
cluster-slave3 172.18.0.5

Docker 安装

curl -sSL https://get.daocloud.io/docker | sh

##换源
###这里可以参考这篇文章http://www.jianshu.com/p/34d3b4568059
curl -sSL https://get.daocloud.io/daotools/set_mirror.sh | sh -s http://67e93489.m.daocloud.io

##开启自启动
systemctl enable docker
systemctl start docker

拉去Centos镜像

docker pull daocloud.io/library/centos:latest

使用docker ps 查看下载的镜像

创建容器

按照集群的架构,创建容器时需要设置固定IP,所以先要在docker使用如下命令创建固定IP的子网

docker network create --subnet=172.18.0.0/16 netgroup

docker的子网创建完成之后就可以创建固定IP的容器了

#cluster-master
#-p 设置docker映射到容器的端口 后续查看web管理页面使用
docker run -d --privileged -ti -v /sys/fs/cgroup:/sys/fs/cgroup --name cluster-master -h cluster-master -p 18088:18088 -p 9870:9870 --net netgroup --ip 172.18.0.2 daocloud.io/library/centos /usr/sbin/init

#cluster-slaves
docker run -d --privileged -ti -v /sys/fs/cgroup:/sys/fs/cgroup --name cluster-slave1 -h cluster-slave1 --net netgroup --ip 172.18.0.3 daocloud.io/library/centos /usr/sbin/init

docker run -d --privileged -ti -v /sys/fs/cgroup:/sys/fs/cgroup --name cluster-slave2 -h cluster-slave2 --net netgroup --ip 172.18.0.4 daocloud.io/library/centos /usr/sbin/init

docker run -d --privileged -ti -v /sys/fs/cgroup:/sys/fs/cgroup --name cluster-slave3 -h cluster-slave3 --net netgroup --ip 172.18.0.5 daocloud.io/library/centos /usr/sbin/init

启动控制台并进入docker容器中:

docker exec -it cluster-master /bin/bash

安装OpenSSH免密登录

1、cluster-master安装:

#cluster-master需要修改配置文件(特殊)
#cluster-master

#安装openssh
[[email protected] /]# yum -y install openssh openssh-server openssh-clients

[[email protected] /]# systemctl start sshd
####ssh自动接受新的公钥
####master设置ssh登录自动添加kown_hosts
[[email protected] /]# vi /etc/ssh/ssh_config
#将原来的StrictHostKeyChecking ask
#设置StrictHostKeyChecking为no
#保存
[[email protected] /]# systemctl restart sshd

2、分别对slaves安装OpenSSH

#安装openssh
[[email protected] /]#yum -y install openssh openssh-server openssh-clients

[[email protected] /]# systemctl start sshd

3、cluster-master公钥分发

在master机上执行
ssh-keygen -t rsa
并一路回车,完成之后会生成~/.ssh目录,目录下有id_rsa(私钥文件)和id_rsa.pub(公钥文件),再将id_rsa.pub重定向到文件authorized_keys

ssh-keygen -t rsa
#一路回车

[[email protected] /]# cat ~/.ssh/id_rsa.pub > ~/.ssh/authorized_keys

文件生成之后用scp将公钥文件分发到集群slave主机

[[email protected] /]# ssh [email protected] 'mkdir ~/.ssh'
[[email protected] /]# scp ~/.ssh/authorized_keys [email protected]:~/.ssh
[[email protected] /]# ssh [email protected] 'mkdir ~/.ssh'
[[email protected] /]# scp ~/.ssh/authorized_keys [email protected]:~/.ssh
[[email protected] /]# ssh [email protected] 'mkdir ~/.ssh'
[[email protected] /]# scp ~/.ssh/authorized_keys [email protected]:~/.ssh

分发完成之后测试(ssh [email protected])是否已经可以免输入密码登录

Ansible安装

[[email protected] /]# yum -y install epel-release
[[email protected] /]# yum -y install ansible
#这样的话ansible会被安装到/etc/ansible目录下

此时我们再去编辑ansible的hosts文件

vi /etc/ansible/hosts
[cluster]
cluster-master
cluster-slave1
cluster-slave2
cluster-slave3

[master]
cluster-master

[slaves]
cluster-slave1
cluster-slave2
cluster-slave3

配置docker容器hosts

由于/etc/hosts文件在容器启动时被重写,直接修改内容在容器重启后不能保留,为了让容器在重启之后获取集群hosts,使用了一种启动容器后重写hosts的方法。
需要在~/.bashrc中追加以下指令

:>/etc/hosts
cat >>/etc/hosts<<EOF
127.0.0.1   localhost
172.18.0.2  cluster-master
172.18.0.3  cluster-slave1
172.18.0.4  cluster-slave2
172.18.0.5  cluster-slave3
EOF
source ~/.bashrc

使配置文件生效,可以看到/etc/hosts文件已经被改为需要的内容

[[email protected] ansible]# cat /etc/hosts
127.0.0.1   localhost
172.18.0.2  cluster-master
172.18.0.3  cluster-slave1
172.18.0.4  cluster-slave2
172.18.0.5  cluster-slave3

用ansible分发.bashrc至集群slave下

ansible cluster -m copy -a "src=~/.bashrc dest=~/"

软件环境配置

下载JDK1.8并解压缩至/opt 目录下

下载hadoop3 到/opt目录下,解压安装包,并创建链接文件

tar -xzvf hadoop-3.2.0.tar.gz
ln -s hadoop-3.2.0 hadoop

配置java和hadoop环境变量

编辑 ~/.bashrc文件

# hadoop
export HADOOP_HOME=/opt/hadoop-3.2.0
export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH

#java
export JAVA_HOME=/opt/jdk8
export PATH=$HADOOP_HOME/bin:$PATH

使文件生效:

source .bashrc

配置hadoop运行所需配置文件

cd $HADOOP_HOME/etc/hadoop/

1、修改core-site.xml

<configuration>
    <property>
        <name>hadoop.tmp.dir</name>
        <value>/home/hadoop/tmp</value>
        <description>A base for other temporary directories.</description>
    </property>
    <!-- file system properties -->
    <property>
        <name>fs.default.name</name>
        <value>hdfs://cluster-master:9000</value>
    </property>
    <property>
    <name>fs.trash.interval</name>
        <value>4320</value>
    </property>
</configuration>

2、修改hdfs-site.xml

<configuration>
<property>
   <name>dfs.namenode.name.dir</name>
   <value>/home/hadoop/tmp/dfs/name</value>
 </property>
 <property>
   <name>dfs.datanode.data.dir</name>
   <value>/home/hadoop/data</value>
 </property>
 <property>
   <name>dfs.replication</name>
   <value>3</value>
 </property>
 <property>
   <name>dfs.webhdfs.enabled</name>
   <value>true</value>
 </property>
 <property>
   <name>dfs.permissions.superusergroup</name>
   <value>staff</value>
 </property>
 <property>
   <name>dfs.permissions.enabled</name>
   <value>false</value>
 </property>
 </configuration>

3、修改mapred-site.xml

<configuration>
<property>
  <name>mapreduce.framework.name</name>
  <value>yarn</value>
</property>
<property>
    <name>mapred.job.tracker</name>
    <value>cluster-master:9001</value>
</property>
<property>
  <name>mapreduce.jobtracker.http.address</name>
  <value>cluster-master:50030</value>
</property>
<property>
  <name>mapreduce.jobhisotry.address</name>
  <value>cluster-master:10020</value>
</property>
<property>
  <name>mapreduce.jobhistory.webapp.address</name>
  <value>cluster-master:19888</value>
</property>
<property>
  <name>mapreduce.jobhistory.done-dir</name>
  <value>/jobhistory/done</value>
</property>
<property>
  <name>mapreduce.intermediate-done-dir</name>
  <value>/jobhisotry/done_intermediate</value>
</property>
<property>
  <name>mapreduce.job.ubertask.enable</name>
  <value>true</value>
</property>
</configuration>

4、yarn-site.xml

<configuration>
    <property>
   <name>yarn.resourcemanager.hostname</name>
   <value>cluster-master</value>
 </property>
 <property>
   <name>yarn.nodemanager.aux-services</name>
   <value>mapreduce_shuffle</value>
 </property>
 <property>
   <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
   <value>org.apache.hadoop.mapred.ShuffleHandler</value>
 </property>
 <property>
   <name>yarn.resourcemanager.address</name>
   <value>cluster-master:18040</value>
 </property>
<property>
   <name>yarn.resourcemanager.scheduler.address</name>
   <value>cluster-master:18030</value>
 </property>
 <property>
   <name>yarn.resourcemanager.resource-tracker.address</name>
   <value>cluster-master:18025</value>
 </property> <property>
   <name>yarn.resourcemanager.admin.address</name>
   <value>cluster-master:18141</value>
 </property>
<property>
   <name>yarn.resourcemanager.webapp.address</name>
   <value>cluster-master:18088</value>
 </property>
<property>
   <name>yarn.log-aggregation-enable</name>
   <value>true</value>
 </property>
<property>
   <name>yarn.log-aggregation.retain-seconds</name>
   <value>86400</value>
 </property>
<property>
   <name>yarn.log-aggregation.retain-check-interval-seconds</name>
   <value>86400</value>
 </property>
<property>
   <name>yarn.nodemanager.remote-app-log-dir</name>
   <value>/tmp/logs</value>
 </property>
<property>
   <name>yarn.nodemanager.remote-app-log-dir-suffix</name>
   <value>logs</value>
 </property>
</configuration>

打包hadoop 向slaves分发

tar -cvf hadoop-dis.tar hadoop hadoop-3.2.0

使用ansible-playbook分发.bashrc和hadoop-dis.tar至slave主机

---
- hosts: cluster
  tasks:
    - name: copy .bashrc to slaves
      copy: src=~/.bashrc dest=~/
      notify:
        - exec source
    - name: copy hadoop-dis.tar to slaves
      unarchive: src=/opt/hadoop-dis.tar dest=/opt

  handlers:
    - name: exec source
      shell: source ~/.bashrc

将以上yaml保存为hadoop-dis.yaml,并执行

ansible-playbook hadoop-dis.yaml

hadoop-dis.tar会自动解压到slave主机的/opt目录下

Hadoop 启动

格式化namenode

hadoop namenode -format

如果看到storage format success等字样,即可格式化成功

启动集群

cd $HADOOP_HOME/sbin
start-all.sh

启动后可使用jps命令查看是否启动成功

注意:
在实践中遇到节点slaves 上的datanode服务没有启动,查看slave上目录结构发现
没有生成配置文件中设置的文件夹,比如:core-site.xml中

<property>
        <name>hadoop.tmp.dir</name>
        <value>/home/hadoop/tmp</value>
        <description>A base for other temporary directories.</description>
    </property>

hdfs-site.xml文件中:

<property>
   <name>dfs.namenode.name.dir</name>
   <value>/home/hadoop/tmp/dfs/name</value>
 </property>
 <property>
   <name>dfs.datanode.data.dir</name>
   <value>/home/hadoop/data</value>
 </property>

手动到节点中生成这些文件夹,之后删除master中这些文件夹和$HADOOP_HOME下的logs文件夹,之后重新格式化namenode

hadoop namenode -format

再次启动集群服务:

start-all.sh

这时在到从节点观察应该会看到节点服务

验证服务

访问

http://host:18088
http://host:9870

来查看服务是否启动

转载:https://www.jianshu.com/p/d7fa21504784

原文地址:https://www.cnblogs.com/coolwxb/p/10975352.html

时间: 2024-11-09 05:58:23

Docker中Hadoop集群搭建的相关文章

三节点Hadoop集群搭建

1. 基础环境搭建 新建3个CentOS6.5操作系统的虚拟机,命名(可自定)为masternode.slavenode1和slavenode2.该过程参考上一篇博文CentOS6.5安装配置详解 2.Hadoop集群搭建(以下操作中三个节点相同的地方就只给出主节点的截图,不同的才给出所有节点的截图)   2.1 系统时间同步 使用date命令查看当前系统时间 系统时间同步 [[email protected] ~]# cd /usr/share/zoneinfo/ [[email protec

hadoop 集群搭建-suse linux 11

好久都没写了啊.感觉自己都不像是一个搞技术都了.来个存货吧! hadoop 集群搭建 3台机器 suse 系统 规划 IP 主机名 hostname hadoop角色10.96.91.93 namenode93 NameNode.SecondaryNameNode .ResourceManage. DataNode .NodeManager10.96.91.129 datanode129 DataNode NodeManager10.96.91.130 datanode130 DataNode

Win7下MyEclipse远程连接到Mac/Linux中Hadoop集群

Win7下MyEclipse远程连接到Mac/Linux中Hadoop集群(也可访问该网页查看:http://tn.51cto.com/article/562 ) 所需软件:(1)下载Hadoop2.5.1到Win7系统下,并解压缩Hadoop2.5.1下载地址:Indexof/dist/hadoop/core/hadoop-2.5.1http://archive.apache.org/dist/hadoop/core/hadoop-2.5.1/ 说明:Win7中下载的是Hadoop2.5.1,

Hadoop集群搭建步骤

实验性操作是在虚拟机里进行的,除了搭建hadoop本身的操作之外,遇到的其它问题总结如下: 1. 虚拟机挂载windows磁盘: 添加硬件,要保证该硬件此时没有被读写访问等,因为挂载后,该磁盘在宿主机上就不能用了.启动虚拟机linux,执行 fdisk –l 查看windows磁盘的分区,如/dev/sdb2,然后执行挂载命令: mount /dev/sdb2 /mnt/win/ 然后就可以到/mnt/win目录下访问磁盘上的内容了 2. hadoop启动时如果报错,提示JAVA_HOME is

Hadoop集群搭建文档

  环境: Win7系统装虚拟机虚拟机VMware-workstation-full-9.0.0-812388.exe Linux系统Ubuntu12.0.4 JDK                jdk-7u17-linux-i586.tar.gz 搭建步骤: 首先在win系统装虚拟机,执行VMware-workstation-full-9.0.0-812388.exe: 其次需要在虚拟机上装Ubuntu12.0.4: 安装完成Ubuntu12.0.4之后,需要安装JDK,(注意:安装JDK需

Hadoop集群搭建配置文件汇总

核心内容: 1.Hadoop1.1.2伪分布(或集群)搭建核心配置文件 2.Hadoop2.4.1伪分布(或集群无HA)搭建核心配置文件 3.Hadoop2.4.1 + HA 集群搭建核心配置文件 1.Hadoop1.1.2伪分布(或集群)搭建核心配置文件 hadoop1.1.2伪分布(集群)搭建 前期准备(略) 安装hadoop1.1.2 1.解压缩 2.修改配置文件 ----------------------core-site.xml--------------------- <prope

Hadoop集群搭建详细步骤(2.6.0)

本文记录在3台物理机上搭建Hadoop 2.6.0的详细步骤及碰到的问题解决.默认使用root账号操作,实际中建议使用专用的hadoop用户账号. 1. 环境 机器: 物理机3台,ip分别为192.168.1.130.192.168.1.132.192.168.1.134 操作系统: CentOS 6.6 Java: 1.7 Hadoop: 2.6.0 请确保JDK已安装,使用java -version确认. hosts配置 配置主机hosts文件: vim /etc/hosts 192.168

Hadoop学习之路(四)Hadoop集群搭建和简单应用

概念了解 主从结构:在一个集群中,会有部分节点充当主服务器的角色,其他服务器都是从服务器的角色,当前这种架构模式叫做主从结构. 主从结构分类: 1.一主多从 2.多主多从 Hadoop中的HDFS和YARN都是主从结构,主从结构中的主节点和从节点有多重概念方式: 1.主节点 从节点 2.master slave 3.管理者 工作者 4.leader follower Hadoop集群中各个角色的名称: 服务 主节点 从节点 HDFS NameNode DataNode YARN Resource

Hadoop学习之路(五)Hadoop集群搭建模式和各模式问题

分布式集群的通用问题 当前的HDFS和YARN都是一主多从的分布式架构,主从节点---管理者和工作者 问题:如果主节点或是管理者宕机了.会出现什么问题? 群龙无首,整个集群不可用.所以在一主多从的架构中都会有一个通用的问题: 当集群中的主节点宕机之后,整个集群不可用.这个现象叫做:单点故障.SPOF 单点故障讲述的概念有两点 1.如果说宕机的那个节点是从节点,那么整个集群能够继续运行,并且对外提供正常的服务. 2.如果说宕机的那个节点是主节点,那么整个集群就处于宕机状态. 通用的解决方案:高可用