贝叶斯决策 最大似然估计

贝叶斯决策

首先来看贝叶斯分类,我们都知道经典的贝叶斯公式:

其中:p(w):为先验概率,表示每种类别分布的概率;:类条件概率,表示在某种类别前提下,某事发生的概率;而为后验概率,表示某事发生了,并且它属于某一类别的概率,有了这个后验概率,我们就可以对样本进行分类。后验概率越大,说明某事物属于这个类别的可能性越大,我们越有理由把它归到这个类别下。

我们来看一个直观的例子:已知:在夏季,某公园男性穿凉鞋的概率为1/2,女性穿凉鞋的概率为2/3,并且该公园中男女比例通常为2:1,问题:若你在公园中随机遇到一个穿凉鞋的人,请问他的性别为男性或女性的概率分别为多少?

从问题看,就是上面讲的,某事发生了,它属于某一类别的概率是多少?即后验概率。

设:

由已知可得:

男性和女性穿凉鞋相互独立,所以

(若只考虑分类问题,只需要比较后验概率的大小,的取值并不重要)。

由贝叶斯公式算出:

问题引出

但是在实际问题中并不都是这样幸运的,我们能获得的数据可能只有有限数目的样本数据,而先验概率和类条件概率(各类的总体分布)都是未知的。根据仅有的样本数据进行分类时,一种可行的办法是我们需要先对先验概率和类条件概率进行估计,然后再套用贝叶斯分类器。

先验概率的估计较简单,1、每个样本所属的自然状态都是已知的(有监督学习);2、依靠经验;3、用训练样本中各类出现的频率估计。

类条件概率的估计(非常难),原因包括:概率密度函数包含了一个随机变量的全部信息;样本数据可能不多;特征向量x的维度可能很大等等。总之要直接估计类条件概率的密度函数很难。解决的办法就是,把估计完全未知的概率密度转化为估计参数。这里就将概率密度估计问题转化为参数估计问题,极大似然估计就是一种参数估计方法。当然了,概率密度函数的选取很重要,模型正确,在样本区域无穷时,我们会得到较准确的估计值,如果模型都错了,那估计半天的参数,肯定也没啥意义了。

重要前提

上面说到,参数估计问题只是实际问题求解过程中的一种简化方法(由于直接估计类条件概率密度函数很困难)。所以能够使用极大似然估计方法的样本必须需要满足一些前提假设。

重要前提:训练样本的分布能代表样本的真实分布。每个样本集中的样本都是所谓独立同分布的随机变量 (iid条件),且有充分的训练样本。

极大似然估计

极大似然估计的原理,用一张图片来说明,如下图所示:

总结起来,最大似然估计的目的就是:利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。

原理:极大似然估计是建立在极大似然原理的基础上的一个统计方法,是概率论在统计学中的应用。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计。

由于样本集中的样本都是独立同分布,可以只考虑一类样本集D,来估计参数向量θ。记已知的样本集为:

似然函数(linkehood function):联合概率密度函数称为相对于的θ的似然函数。

如果是参数空间中能使似然函数最大的θ值,则应该是“最可能”的参数值,那么就是θ的极大似然估计量。它是样本集的函数,记作:

求解极大似然函数

ML估计:求使得出现该组样本的概率最大的θ值。

实际中为了便于分析,定义了对数似然函数:

1. 未知参数只有一个(θ为标量)

在似然函数满足连续、可微的正则条件下,极大似然估计量是下面微分方程的解:

2.未知参数有多个(θ为向量)

则θ可表示为具有S个分量的未知向量:

记梯度算子:

若似然函数满足连续可导的条件,则最大似然估计量就是如下方程的解。

方程的解只是一个估计值,只有在样本数趋于无限多的时候,它才会接近于真实值。

极大似然估计的例子

例1:设样本服从正态分布,则似然函数为:

它的对数:

求导,得方程组:

联合解得:

似然方程有唯一解:,而且它一定是最大值点,这是因为当时,非负函数。于是U和的极大似然估计为

例2:设样本服从均匀分布[a, b]。则X的概率密度函数:

对样本

很显然,L(a,b)作为a和b的二元函数是不连续的,这时不能用导数来求解。而必须从极大似然估计的定义出发,求L(a,b)的最大值,为使L(a,b)达到最大,b-a应该尽可能地小,但b又不能小于,否则,L(a,b)=0。类似地a不能大过,因此,a和b的极大似然估计:

总结

求最大似然估计量的一般步骤:

(1)写出似然函数;

(2)对似然函数取对数,并整理;

(3)求导数;

(4)解似然方程。

最大似然估计的特点:

1.比其他估计方法更加简单;

2.收敛性:无偏或者渐近无偏,当样本数目增加时,收敛性质会更好;

3.如果假设的类条件概率模型正确,则通常能获得较好的结果。但如果假设模型出现偏差,将导致非常差的估计结果。

转自:https://blog.csdn.net/zengxiantao1994/article/details/72787849

原文地址:https://www.cnblogs.com/virgil626903642/p/11505573.html

时间: 2025-01-11 21:37:49

贝叶斯决策 最大似然估计的相关文章

贝叶斯————极大似然估计

贝叶斯决策 贝叶斯公式(后验概率): p(w):每种类别分布的概率——先验概率: p(x|w):某类别下x事件发生的概率——条件概率: p(w|x):x事件已经发生,属于某类的概率——后验概率: 后验概率越大,说明x事件属于这个类的概率越大,就越有理由把事件x归到这个类下 实际问题中,我们只知道优先数目的样本数据,先验概率和条件概率不知道,求不出后验概率.这个时候需要对先验概率和条件概率进行估计,然后再使用贝叶斯分类器. 先验概率的估计方法: 每个样本的属于哪个类是已知的(有监督学习): 依靠经

最小二乘法和最大似然估计

一:背景:当给出我们一些样本点,我们可以用一条直接对其进行拟合,如y= a0+a1x1+a2x2,公式中y是样本的标签,{x1,x2,x3}是特征,当我们给定特征的大小,让你预测标签,此时我们就需要事先知道参数{a1,a2}.而最小二乘法和最大似然估计就是根据一些给定样本(包括标签值)去对参数进行估计<参数估计的方法>.一般用于线性回归中获得参数进行拟合.而梯度下降方法主要用于逻辑回归分类问题中寻找最佳参数. 二:最小二乘法: 基本思想: 简单地说,最小二乘的思想就是要使得观测点和估计点的距离

极大似然估计

极大似然估计又称最大似然估计,对于一个已知的模型来说,还有些参数是不确定的,但是有了真实数据,那么这些参数可不可计算出呢?或者估计出最有可能的情况? 举个例子,例如有一组来自正态分布(也叫高斯分布)的样本数据,每个样本的数据都独立同分布,比如是正态分布,但正态分布的参数μ,σ都不知道,如果用极大似然估计的方法就可以用这些样本数据就可估计出正态分布中参数.概括起来说,就是用样本来估计总体情况,(调查问卷.人口普查等等其实就暗含这个原理). 假设总体X的分布为f(x:θ1,...θn),其中θ是未知

【MLE】最大似然估计Maximum Likelihood Estimation

模型已定,参数未知 最大似然估计提供了一种给定观察数据来评估模型参数的方法,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知.我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差. 最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的.下面我们具体描述一下最大似然估计: 首先,假设为独立同分布的采样,θ为模型参数,f为我们所使用的模型,遵循我们上述的独

【机器学习】(3)拟合度与最大似然估计

在大致了解了机器学习的算法分类(监督式.非监督式以及增强学习)和梯度算法后,今天我们来了解下拟合度和最大似然估计的相关问题. 一.最小二乘法的拟合度 监督式学习中一类典型的应用就是回归问题,基本的就是线性回归,即用一条直线去逼近训练集合.最小二乘法就是根据已有的训练集样本来确定拟合度最好的函数 曲线.但是由于选择一个什么样的曲线是人工决定的,而不同的曲线又具有不同的性质,从而导致不同函数模型使用最小二乘法的拟合度是不同的.以一个m个样本 的房屋价格和大小数据M为例,我们可以选择线性回归(用一条直

转 通俗理解 最小二乘 和 最大似然估计

最大似然估计:现在已经拿到了很多个样本(你的数据集中所有因变量),这些样本值已经实现,最大似然估计就是去找到那个(组)参数估计值,使得前面已经实现的样本值发生概率最大.因为你手头上的样本已经实现了,其发生概率最大才符合逻辑.这时是求样本所有观测的联合概率最大化,是个连乘积,只要取对数,就变成了线性加总.此时通过对参数求导数,并令一阶导数为零,就可以通过解方程(组),得到最大似然估计值. 就是利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值! 换句话说,极大似然估

又看了一次EM 算法,还有高斯混合模型,最大似然估计

先列明材料: 高斯混合模型的推导计算(英文版): http://www.seanborman.com/publications/EM_algorithm.pdf 这位翻译写成中文版: http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html 高斯混合模型的流程: http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html 最大似然估计: http://bl

先验概率、后验概率、似然估计,似然函数、贝叶斯公式

联合概率的乘法公式: (如果随机变量是独立的,则)  由乘法公式可得条件概率公式:, , 全概率公式:,其中 (,则,则可轻易推导出上式) 贝叶斯公式: 又名后验概率公式.逆概率公式:后验概率=似然函数×先验概率/证据因子.解释如下,假设我们根据“手臂是否很长”这个随机变量(取值为“手臂很长”或“手臂不长”)的观测样本数据来分析远处一个生物是猩猩类别还是人类类别(假设总共只有这2种类别).我们身处一个人迹罕至的深山老林里,且之前就有很多报道说这里有猩猩出没,所以无需观测样本数据就知道是猩猩的先验

统计参数的最大似然估计

已经介绍了统计参数的举估计,下面介绍另外一种估计,并且比较这两者. 对于一组样本,它们无条件是独立的.那么考虑到联合分布函数与边缘分布函数的关系,利用乘法原理,我们发现,样本的联合分布函数是: (离散) (连续) 又发现,它们是与总体同分布的:,那么连续的情况还可以写作: 现如今上面的式子中存在未知的参数,.把 L 换做以众多未知参数为元,就得到了: 称作是样本的似然函数. 当使得似然函数最大时的样本的参数估计,叫做样本的最大似然估计. 至于如何求之,仅仅是简单的多元函数求值而已. 发现 L 是