import cv2 as cvimport tensorflow as tfimport numpy as npimport random ##以下为数据预处理,分类为cata,总共样本为cata*num_batch,总共图像为cata*num_imgcata=2 #需要分的类别num_img=49 #图像个数#该函数返回x与y,输入批量,产生cata*num_batchdef XANDY(num_batch): x_mouse=np.zeros([num_batch,500,500,1]) #保存鼠标图片矩阵 x_keyboard=np.zeros([num_batch,500,500,1]) #保存键盘图片矩阵 temp_mouse=random.sample(range(0,num_img),num_batch) temp_keyboard=random.sample(range(0,num_img),num_batch) for i in range(num_batch): img_mouse1 = cv.imread(‘C:\\Users\\HHQ\\Desktop\\tangjun\\mouse\\data_mouse\\‘+str(temp_mouse[i])+‘.PNG‘, cv.IMREAD_GRAYSCALE) img_mouse=cv.resize(img_mouse1,(500,500)) x_mouse[i,:,:,0]=img_mouse img_keyboard1 = cv.imread(‘C:\\Users\\HHQ\\Desktop\\tangjun\\mouse\\data_keyboard\\‘+str(temp_keyboard [i])+‘.bmp‘, cv.IMREAD_GRAYSCALE) img_keyboard = cv.resize(img_keyboard1, (500, 500)) x_keyboard [i,:,:,0] = img_keyboard xx=np.vstack((x_mouse,x_keyboard)) #表签中0表示鼠标,1表示键盘 y_0=np.zeros([num_batch,1]) y_1=np.ones([num_batch,1]) y_mouse=np.hstack((y_1,y_0)) y_keyboard=np.hstack((y_0,y_1)) yy_=np.vstack((y_mouse,y_keyboard)) #标签为二维数组,行保存样本数量,列保存分类 return xx,yy_ x=tf.placeholder(dtype=tf.float32,shape=[None ,500,500,1])y_=tf.placeholder(dtype=tf.float32,shape=[None,cata])#建立卷积#第一层卷积W_cov1=tf.Variable(tf.truncated_normal([5,5,1,32],stddev=0.1),dtype=tf.float32)B_cov1=tf.Variable(tf.truncated_normal([32],stddev=0.1),dtype=tf.float32)A_cov1=tf.nn.relu(tf.nn.conv2d(x,W_cov1,strides=[1,1,1,1],padding=‘SAME‘)+B_cov1)P_cov1=tf.nn.max_pool(A_cov1,ksize=[1,2,2,1],strides=[1,2,2,1],padding=‘VALID‘)#得到250*250*32维度的图像 #第二层卷积W_cov2=tf.Variable(tf.truncated_normal([5,5,32,64],stddev=0.1),dtype=tf.float32)B_cov2=tf.Variable(tf.truncated_normal([64],stddev=0.1),dtype=tf.float32)A_cov2=tf.nn.relu(tf.nn.conv2d(P_cov1,W_cov2,strides=[1,1,1,1],padding=‘SAME‘)+B_cov2)# #第三层卷积# W_cov3=tf.Variable(tf.truncated_normal()) # 建立全连接层,识别2物体w=tf.Variable(tf.zeros([250*250*64,cata]),dtype= tf.float32)b=tf.Variable(tf.zeros([cata]),dtype=tf.float32)x_reshape=tf.reshape(A_cov2,[-1,250*250*64])y=tf.matmul(x_reshape,w)+b #定义交叉熵,为了定义损失函数loss=tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)# loss=-tf.reduce_mean(y_*tf.log(y))#定义优化器# train=tf.train.GradientDescentOptimizer(0.001).minimize(loss)# train=tf.train.AdagradDAOptimizer(0.01).minimize(loss)train=tf.train.AdamOptimizer(0.001).minimize(loss)#定义预测准确率predict1=tf.equal(tf.argmax(y,1),tf.argmax(y_,1))predict=tf.reduce_mean(tf.cast(predict1,tf.float32)) init=tf.initialize_all_variables()sess=tf.Session() sess.run(init)x_pr,y_pr=XANDY(40) for i in range(30): x_ba,y_ba=XANDY(15) sess.run(train,feed_dict={x:x_ba,y_:y_ba}) accuracy=sess.run(predict, feed_dict={x: x_pr, y_: y_pr}) print(‘训练步骤: %d , 训练精度:%g‘ %(i,accuracy))
原文地址:https://www.cnblogs.com/tangjunjun/p/10986239.html
时间: 2024-10-30 22:21:03