静态主席树总结(静态区间的k大)

静态主席树总结(静态区间的k大)

首先我们先来看一道题

给定N个正整数构成的序列,将对于指定的闭区间查询其区间内的第K小值。       输入格式:
第一行包含两个正整数N、M,分别表示序列的长度和查询的个数。
第二行包含N个正整数,表示这个序列各项的数字。
接下来M行每行包含三个整数 l, r, kl,r,k , 表示查询区间[l, r][l,r]         内的第k小值。
输出格式:
输出包含k行,每行1个正整数,依次表示每一次查询的结果

对于100%的数据满足:\(1 \leq N, M \leq 2\cdot 10^5\) \(1≤N,M≤2?10^5\)

对于数列中的所有数\(a_i\),都有\(-10^9\leq a_i\leq 10^9\)

基本思路

这个题目看上去很像一道线段树或者树状数组之类的裸题,但是仔细想想,区间第\(k\)小是线段树等数据结构维护不了的,这个时候,我们就需要引进一种新的数据结构,就是可持久化线段树,也就是主席树。(可持久化数据结构是可以访问历史版本的,这里也可以做到,但是这里不需要访问历史版本,我们只利用可持久化数据结构的思想)

主席树的本质上是N颗值域线段树利用可持久化数据结构的思想储存起来(不知道值域线段树的请自行转走),对于每一颗线段树我们都维护从序列开始到这个元素的值域(即第\(i\)颗线段树维护的区间是第一号元素到第\(i\)号元素的值域)。

但实际上我们没有那么多时间和空间去维护\(n\)颗线段树,所以我们就要想,每一颗线段树由于值域相同,它们的形状是完全相同的,并且对于一颗第\(i\)颗线段树来说,它相对于第\(i-1\)颗线段树只增加了一个值,放在值域中,也就只有包含这个值的log个节点不同,所以对于每一颗线段树,我们只需要新开\(log\)个节点,其它的节点就用第\(i-1\)颗线段树的节点(如果你会可持久化数组,就会发现这其实跟可持久化数组很像)。

注意要离散化

实现过程

---

构建

我们先开一个root数组来保存每一颗线段树的根,对于每一个线段树的节点记录它的值,左儿子和右儿子的编号,在构建第i颗线段树时,我们要同时访问第i-1颗线段树,每次构建一个节点之后,对于不包含这个新增值的儿子我们就直接将第i-1颗线段树的相应的那个儿子作为第i颗线段树的这个儿子。

比如说,假设离散化之后的值域是1~5,第i号元素是1,我们先构建根节点,然后发现这个节点左儿子的值域是1~2,右儿子的值域是3~5,右儿子的值域不包括1,所以右儿子就直接用第i-1颗线段树的右儿子,而此时我们就新建一个节点作为这个节点的左儿子,值为第i-1颗线段树的左儿子的值+1。

    int modify(int l,int r,int x,int k)
    {
        //x表示上一颗线段树当前节点的标号
        //k表示需要新增的元素
        int y=++cnt;//新建当前节点,y位编号
        t[y]=t[x];//将上一颗线段树的节点的信息传递给当前节点
        t[y].x++;/*因为不包含k的节点不会被访问,所以实质上只要被访问过的节点都要加1*/
        if(l==r)return y;
        int mid=(l+r)>>1;
        if(k<=mid)t[y].l=modify(l,mid,t[x].l,k);
        else t[y].r=modify(mid+1,r,t[x].r,k);/*根据k值修改左右儿子信息*/
        return y;//将当前节点的编号号返回上一层
    }

查询

主席树的查询跟值域线段树的查询差不多,值域线段树的查询大家都会吧,我这里就不再赘述,不过,主席树每次需要同时查询两颗线段树,如果我们需要查询\([l,r]\)闭区间中第\(k\)小的值,我们就查询第\(l-1\)颗线段树和第\(r\)颗线段树的信息,由于所有线段树维护的值域完全一样,所以我们可以用第r颗线段树询问到的值减去第\(l-1\)颗线段树的值,就可以得出\([l,r]\)闭区间的值。(注意:你查询到的是离散之后的值,你需要输出的是离散之前的值)

具体实现过程

    int query(int l,int r,int la,int no,int k)
    {
        //la,no,分别表示你要查询的两颗线段树的相应节点编号
        if(l==r)return l;/*如果节点内只有一个值,这就是第k大,直接返回*/
        int l1=t[la].l,l2=t[no].l,r1=t[la].r,r2=t[no].r;
        //l1,r1,l2,r2分别表示这两个节点的左右儿子。
        int s=t[l2].s-t[l1].s  ,  mid=(l+r)>>1;
        if(s>=k)return query(l,mid,l1,l2,k);
        else return query(mid+1,r,r1,r2,k-s);
    }

代码

    #include<bits/stdc++.h>
    using namespace std;
    inline int gi()
    {
        char a=getchar();int b=0;
            while(a<‘0‘||a>‘9‘)a=getchar();
        while(a>=‘0‘&&a<=‘9‘)b=b*10+a-‘0‘,a=getchar();
        return b;
    }
    const int N=1e6+20;
    struct ljq
    {
        int x,id;
    }b[N];
    struct tree
    {
       int l,r,s;
    }t[N*5];
    int cmp(ljq x,ljq y){return x.x<y.x;}
    int a[N],p[N],root[N],n,m,cnt;
    void work1()
    {
        n=gi();m=gi();
        for(int i=1;i<=n;++i)
            b[i].x=gi(),b[i].id=i;
        sort(b+1,b+n+1,cmp);
        b[0].x=-2e9;
        for(int s=0,i=1;i<=n;++i)
        {
            if(b[i].x!=b[i-1].x)p[++s]=b[i].x;
            a[b[i].id]=s;
        }
    }
    void bt(int l,int r,int x)
    {
        if(l==r)return;
        int mid=(l+r)>>1;
        t[x].l=++cnt;
        t[x].r=++cnt;
        bt(l,mid,t[x].l);
        bt(mid+1,r,t[x].r);
    }
    void work2(int l,int r,int la,int no,int x)
    {
        t[no].s=t[la].s+1;
        if(l==r)return;
        int mid=(l+r)>>1;
        t[no].l=t[la].l;
        t[no].r=t[la].r;
        if(x<=mid)
        {
            t[no].l=++cnt;
            work2(l,mid,t[la].l,t[no].l,x);
        }
        else
        {
            t[no].r=++cnt;
            work2(mid+1,r,t[la].r,t[no].r,x);
        }
    }/*这个构建主席树的实现过程和上面略有不同,上面的更方便,是我在打带修改的主席树的时候写的,这里我懒得改了,仅做参考*/
    int query(int l,int r,int la,int no,int k)
    {
        if(l==r)return l;
        int l1=t[la].l,l2=t[no].l,r1=t[la].r,r2=t[no].r;
        int s=t[l2].s-t[l1].s,mid=(l+r)>>1;
        if(s>=k)return query(l,mid,l1,l2,k);
        else return query(mid+1,r,r1,r2,k-s);
    }
    int main()
    {
        work1();
        root[0]=++cnt;
        bt(1,n,1);
        for(int i=1;i<=n;++i)
        {
            root[i]=++cnt;
            work2(1,n,root[i-1],root[i],a[i]);
        }
        while(m--)
        {
            int l=gi(),r=gi(),k=gi();
            int x=query(1,n,root[l-1],root[r],k);
            printf("%d\n",p[x]);
        }
        return 0;
    }

原文地址:https://www.cnblogs.com/ljq-despair/p/8639345.html

时间: 2024-11-05 13:38:05

静态主席树总结(静态区间的k大)的相关文章

【转载】【树状数组区间第K大/小】

原帖:http://www.cnblogs.com/zgmf_x20a/archive/2008/11/15/1334109.html 回顾树状数组的定义,注意到有如下两条性质: 一,c[ans]=sum of A[ans-lowbit(ans)+1 ... ans];二,当ans=2^k时, c[ans]=sum of A[1 ... ans]; 下面说明findK(k)如何运作:1,设置边界条件ans,ans'<maxn且cnt<=k:2,初始化cnt=c[ans],其中ans=2^k且k

Permutation UVA - 11525(值域树状数组,树状数组区间第k大(离线),log方,log)

Permutation UVA - 11525 看康托展开 题目给出的式子(n=s[1]*(k-1)!+s[2]*(k-2)!+...+s[k]*0!)非常像逆康托展开(将n个数的所有排列按字典序排序,并将所有排列编号(从0开始),给出排列的编号得到对应排列)用到的式子.可以想到用逆康托展开的方法.但是需要一些变化: for(i=n;i>=1;i--) { s[i-1]+=s[i]/(n-i+1); s[i]%=(n-i+1); } 例如:n=3时,3=0*2!+0*1!+3*0!应该变为3=1

主席树模板(区间第k小)

#include<cmath> #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #include<algorithm> #define MAXN 200010 using namespace std; int n,m,cnt; struct Tree { int l,r,sum; }T[MAXN*60]; int rank[MAXN],ro

主席树板子题区间第k小

https://www.luogu.org/problem/P3834 #include<bits/stdc++.h> using namespace std; typedef long long ll ; const int maxn=2e5+7; int n,m,cnt,root[maxn],a[maxn],x,y,k; struct node { int l,r,sum; } T[maxn*25]; vector<int> v; int getid(int x) { retu

【POJ】【2104】区间第K大

可持久化线段树 可持久化线段树是一种神奇的数据结构,它跟我们原来常用的线段树不同,它每次更新是不更改原来数据的,而是新开节点,维护它的历史版本,实现“可持久化”.(当然视情况也会有需要修改的时候) 可持久化线段树的应用有很多,仅以区间第K大这种简单的问题来介绍这种数据结构. 我们原本建立的线段树是表示区间的,或者说,维护的是[位置],存的是每个位置上的各种信息.它的优点是满足区间加法,但不满足区间减法,所以我们这里要换一种建树方式:对于每个区间[1,i]建立一棵权值线段树.这个线段树的作用其实就

主席树(静态区间第k大)

前言 如果要求一些数中的第k大值,怎么做? 可以先就这些数离散化,用线段树记录每个数字出现了多少次. ... 那么考虑用类似的方法来求静态区间第k大. 原理 假设现在要有一些数 我们可以对于每个数都建一棵新的线段树,用来记录出现每个数字出现了多少次的前缀和. 那么假设要求区间[l,r]的第k大,将第r棵线段树减去第l-1棵线段树,像上面求所有数的第k大一样来求就可以了. 但是,对于每一个数都建一个线段树显然会爆空间. 现在考虑如何节约空间. 假设现在有四个数1 4 2 3,依次加入,可以这样处理

POJ2104-- K-th Number(主席树静态区间第k大)

[转载]一篇还算可以的文章,关于可持久化线段树http://finaltheory.info/?p=249 无修改的区间第K大 我们先考虑简化的问题:我们要询问整个区间内的第K大.这样我们对值域建线段树,每个节点记录这个区间所包含的元素个数,建树和查询时的区间范围用递归参数传递,然后用二叉查找树的询问方式即可:即如果左边元素个数sum>=K,递归查找左子树第K大,否则递归查找右子树第K – sum大,直到返回叶子的值. 现在我们要回答对于区间[l, r]的第K大询问.如果我们能够得到一个插入原序

静态区间第k大 树套树解法

然而过不去你谷的模板 思路: 值域线段树\([l,r]\)代表一棵值域在\([l,r]\)范围内的点构成的一颗平衡树 平衡树的\(BST\)权值为点在序列中的位置 查询区间第\(k\)大值时 左区间在\([l,r]\)范围内的树的大小与\(k\)比较 大了进去,小了减掉换一边 关于建树 递归建估计是\(O(nlog^2n)\)的 Code: #include <cstdio> #include <cstdlib> #include <algorithm> #includ

poj 2104 静态主席树

我的第一道主席树(静态). 先记下自己对主席树的理解: 主席树的作用是用于查询区间第k大的元素(初始化nlog(n),查询log(n)) 主席树=可持续线段树+前缀和思想 主席树实际上是n棵线段树(由于是可持续化线段树,所以实际上是n个长度为log(n)的链),第i棵线段树保存的是a[1]~a[i]这i个数的值域线段树,每个节点维护的是该值域中元素个数,这个是可以相减的,所以建完树后,查询[lf,rg]的第k大时,保存当前查询的值域区间在lf-1和rg这两棵线段树中的节点u,v(不理解看代码),