fast.ai Lesson 2: Deep Learning 2018

data augumentation

原文地址:https://www.cnblogs.com/ecoflex/p/8995745.html

时间: 2024-10-11 03:46:00

fast.ai Lesson 2: Deep Learning 2018的相关文章

fast.ai Lesson 1: Deep Learning 2018

10 free hours run on AWS click this one click on new machine pick a region choose linux ubuntu 16    250GB is preferred ctrl shift v to paste your password zoom in takes an hour or so. when it finishs running, you need to reboot your paperspace compu

CoRR 2018 | Horovod: Fast and Easy Distributed Deep Learning in Tensorflow

将深度学习模型的训练从单GPU扩展到多GPU主要面临以下问题:(1)训练框架必须支持GPU间的通信,(2)用户必须更改大量代码以使用多GPU进行训练.为了克服这些问题,本文提出了Horovod,它通过Ring Allreduce实现高效的GPU间通信,而且仅仅更改少量代码就可以实现多GPU训练. TensorFlow中提供了一些分布式训练的API,这些API适用于不同的环境.这就导致用户往往不知道如何更改代码以进行分布式训练,而且debug也很困难.再者,TensorFlow的分布式训练性能与理

CMU Deep Learning 2018 by Bhiksha Raj 学习记录(17)

NN is pretty bad at learning this pattern. green dots are referred to the first layer. blue -> second layer red -> third layer https://github.com/cmudeeplearning11785/machine_learning_gpu/blob/master/Dockerfile www.dockerhub.com https://github.com/w

CMU Deep Learning 2018 by Bhiksha Raj 学习记录(1)

Recitation 2 numpy operations array index x = np.arange(10) ** 2 # x:[ 0 1 4 9 16 25 36 49 64 81] print(x[::-1]) # all reversed print(x[8:1:-1]) # reversed slice print(x[::2]) # every other print(x[:]) # no-op (but useful syntax when dealing with n-d

CMU Deep Learning 2018 by Bhiksha Raj 学习记录(7)

https://zhuanlan.zhihu.com/p/22810533 L2 -> Regression Problems KL -> Classification Problems http://deeplearning.cs.cmu.edu/slides/lec8.stochastic_gradient.pdf 原文地址:https://www.cnblogs.com/ecoflex/p/8886201.html

CMU Deep Learning 2018 by Bhiksha Raj 学习记录(10)

http://deeplearning.cs.cmu.edu/slides/lec11.recurrent.pdf I think the subscripts in this lecture is quite confusing, and even incorrect sometimes. Jacobian Matrix 原文地址:https://www.cnblogs.com/ecoflex/p/8904117.html

CMU Deep Learning 2018 by Bhiksha Raj 学习记录(18)

https://www.youtube.com/watch?v=oiNFCbD_4Tk <eos> end of section a common trick image to seq problem mistake might happen. look at the fig(1,0) could lose info by only taking the red box into consideration. the new framework still has a problem soft

CMU Deep Learning 2018 by Bhiksha Raj 学习记录(20) Lecture 20: Hopfield Networks 1

symmetric version: called Hopfield Net      if y <-- minus y, energy won't change! the second last line's first "-" is not the minus sign https://zhuanlan.zhihu.com/p/21539285 原文地址:https://www.cnblogs.com/ecoflex/p/8971351.html

(转)WHY DEEP LEARNING IS SUDDENLY CHANGING YOUR LIFE

Main Menu Fortune.com E-mail Tweet Facebook Linkedin Share icons By Roger Parloff Illustration by Justin Metz SEPTEMBER 28, 2016, 5:00 PM EDT WHY DEEP LEARNING IS SUDDENLY CHANGING YOUR LIFE Decades-old discoveries are now electrifying the computing