Storm是什么

Why use Storm?

Apache Storm是一个免费的开源的分布式实时计算系统。Storm使得可靠的实时处理无边界的数据量变得很容易,就如同Hadoop做批处理那样。Storm很简单,可以用任意的编程语言。

Storm有许多使用案例:实时分析、在线机器学习、持续的计算、分布式RPC、ETL等等。Storm很快速:每个节点每秒钟可以处理一百万个元组。它是可伸缩的、容错的,保证你的数据将会被处理,并且很容易操作。

Storm集成了队列和数据库技术。一个Storm拓扑结构以任意复杂的方式消费并处理数据流,在计算的每一个阶段会重新分区数据流。

Concepts

Topologies

一个实时应用程序的逻辑被打包成一个Storm topology。Storm topology和MapReduce的Job很类似。一个最关键的不同在于,一个MapReduce的Job最终会结束,而一个topology是永远运行的(除非你手动杀死它)。一个topology是一个由spouts和bolts以及将它们连接起来的stream grouping构成的图。

Streams

Stream是Storm中的核心抽象。一个Stream是一个无边界的元组序列。Stream是由元组中的命名字段被定义的。默认情况下,元组可以包含integers, longs, shorts, bytes, strings, doubles, floats, booleans, and byte arrays。你也可以定义自己的序列化方式。

每一个Stream在被声明的时候都会给定一个id。

Spouts

在一个topology中,spouts是流的来源。一般而言,spout从外部的源中读取元组,并将其发送到topology中。Spout可以是可靠的,也可以是不可靠的。一个可靠的spout是如果在Storm中处理失败的话它会重新放一个元组,而不可靠的spout在它发送这个元组以后就忘记它了。

Spouts可以发送到一个或者多个Stream。为了这样做,在声明多个stream的时候OutputFieldsDeclarer的declareStream方法。

Spout中的主要方法是nextTuple。nextTuple发送一个新的元组到topology中或者没有新的元组的时候简单的返回。另一个重要的方法是ack和fail。

Bolts

Topologies中的所有处理都是由Bolts来做的。Bolts可以做许多事情,比如:过滤、聚集、连接数据等等。

Bolts可以做简单的流转换,复杂的流转换通常需要多步,因此也需要多个bolts。

当你声明了一个bolt的输入流的时候,你总是会订阅来自其它组件的特别的流。如果你想订阅所有组件的流,那么你必须一个一个的订阅。

bolt的主要方法是execute

Stream groupings

一个stream grouping是定义流应该怎样被分区到bolt的task中去。

  1. Shuffle grouping:元组被随机分配到task中去,因此每个bolt可以保证获得相等数量的元组
  2. Fields grouping:按特定的字段分区。例如,"user-id"相同的元组总是被分到相同的task中去
  3. Partial Key grouping:跟Fields grouping类似,只不过会考虑下游的bolts的负载均衡
  4. All grouping:流会被复制,并且分发给所有的bolt
  5. Global grouping:整个流只进入到一个bolt的task。特别的,将进入到id最小的那个task
  6. None grouping:你不关心怎么分组。等价于Shuffle grouping
  7. Direct grouping:元组的生产者决定哪些消费者任务可以收到这个元组
  8. Local or shuffle grouping:如果目标bolts在相同的worker中有一个或者多个task,元组将会被随机分配到这些任务中

Reliability

Storm保证每个spout元组被完全处理。这是通过跟踪由每个元组触发的元组树实现的

Tasks

每一个spout和bolt都执行很多tasks,每一个task对应执行的一个线程,stream grouping定义元组怎么从一个task到另一个task。

Workers

Topologies执行一个或多个worker进程。每个worker进程是一个物理的JVM。

参考 http://storm.apache.org/index.html

原文地址:https://www.cnblogs.com/cjsblog/p/8385869.html

时间: 2024-10-21 03:49:38

Storm是什么的相关文章

Apache Storm 1.1.0 中文文档 | ApacheCN

前言  Apache Storm 是一个免费的,开源的,分布式的实时计算系统. 官方文档: http://storm.apache.org 中文文档: http://storm.apachecn.org ApacheCN 最近组织了翻译 Storm 1.1.0 中文文档 的活动,整体 翻译进度 为 96%. 感谢大家参与到该活动中来 感谢无私奉献的 贡献者,才有了这份 Storm 1.1.0 中文文档 感谢一路有你的陪伴,我们才可以做的更好,走的更快,走的更远,我们一直在努力 ... 网页地址:

Storm入门(四)WordCount示例

Storm API文档网址如下: http://storm.apache.org/releases/current/javadocs/index.html 一.关联代码 使用maven,代码如下. pom.xml  和Storm入门(三)HelloWorld示例相同 RandomSentenceSpout.java /** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor lice

storm的可靠性

消息确认机制: 在数据发送的过程中可能会数据丢失导致没能接收到,spout有个超时时间(默认是30S),如果30S过去了还是没有接收到数据,也认为是处理失败. 运行结果都是处理成功 参考代码StormTopologyAcker.java package yehua.storm; import java.util.Map; import org.apache.storm.Config; import org.apache.storm.LocalCluster; import org.apache.

Storm介绍及核心组件和编程模型

离线计算 离线计算:批量获取数据.批量传输数据.周期性批量计算数据.数据展示 代表技术:Sqoop批量导入数据.HDFS批量存储数据.MapReduce批量计算数据.Hive批量计算数据.azkaban/oozie任务调度 流式计算 流式计算:数据实时产生.数据实时传输.数据实时计算.实时展示 代表技术:Flume实时获取数据.Kafka/metaq实时数据存储.Storm/JStorm实时数据计算.Redis实时结果缓存.持久化存储(mysql). 一句话总结:将源源不断产生的数据实时收集并实

storm单词计数 本地执行

import java.io.File; import java.io.IOException; import java.util.Collection; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Map.Entry; import org.apache.commons.io.FileUtils; import backtype.storm.Config; imp

Storm实验 -- 单词计数4

在上一次单词计数的基础上做如下改动: 使用 自定义  分组策略,将首字母相同的单词发送给同一个task计数 自定义 CustomStreamGrouping package com.zhch.v4; import backtype.storm.generated.GlobalStreamId; import backtype.storm.grouping.CustomStreamGrouping; import backtype.storm.task.WorkerTopologyContext;

storm学习笔记完整记录(一)

storm有两种运行模式(本地模式和集群模式) 1. 首先创建一个类似于HelloWorld的简单程序,以便进入storm的大门,包结构如下: 2.从包结构可以知道,这是一个Maven Project,pom.xml的内容如下: <project xmlns="http://maven.apache.org/POM/4.0.0"          xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"    

Storm使用入门之本地开发环境搭建

本篇博文详细告诉你如何安装Storm的本地开发环境,总体分为两步,具体如下: 1.从官网上下载Storm的发布包,下载完成后将其解压,并将解压后的bin目录添加到环境变量(PATH)中,以方便后续执行Storm的相关命令 2.修改Storm的配置文件(storm.yaml),主要是按照实际情况更新配置文件中的集群信息,然后将修改后的配置文件添加到目录(~/.storm/)中,目的是为了后续能够远程启动和停止集群上的计算任务(即topology) 接下来,咱们来详细地介绍每一个操作步骤. 首先,何

JStorm Storm 上手demo

折线之间的内容整理自:http://blog.csdn.net/suifeng3051/article/details/38369689 -------------------------------------------------------------------------------------------------------------------------------------------- 在全面介绍Storm之前,我们先通过一个简单的Demo让大家整体感受一下什么是S

Storm集群上的开发 ,Storm的内部原理,storm集群间的通信机制(九)

storm间的worker会互相通信,上一个worker的结果会交给下一个worker进行计算.看图