【阅读笔记】3D Densely Convolutional Networks for Volumetric Segmentation

3D Densely Convolutional Networks for Volumetric Segmentation 

Toan Duc Bui, Jitae Shin, and Taesup Moon?

School of Electronic and Electrical Engineering, Sungkyunkwan University, Republic of Korea

任务

六个月婴儿脑部分割(四分类)white matter (WM), gray mater (GM), cerebrospinal fluid (CSF) and background (BG) regions.

数据

public 6-month infant brain MRI segmentation challenge (iSeg) dataset

http://iseg2017.web.unc.edu/

10 training samples and 13 testing samples.

Each sample includes a T1 image, a T2 image.

方法

以DenseNet为基础网络结构,采用3D卷积,并使用1*1*1在3*3*3之前减少模型参数;

以stride=2的卷积代替pooling减少空间位置信息的损失;

dropout防止过拟合(每个3*3*3的Conv后),rate=0.2;

T1 T2分别白化操作作为输入,尺寸裁剪为64*64*64输入(受GPU限制);

Adam,mini-batch=4,lr=0.0002,每50000次迭代lr乘0.1;

结果中overlap的部分投票决定。

评价指标

Dice Coefficient (DC),

Modified Hausdorff Distance (MHD)

Average Surface Distance (ASD).

私人总结(此总结不具有普适性,给自己看的……不喜勿喷)

没有特别重大的创新,但至少有值得借鉴的地方。

先说一点疑问:3D分割一直以来都有一个问题,可训练数据少,而文中所用方法的数据也非常少,虽然做了overlap的裁剪(未指明原T1尺寸和overlap的大小),但是对数据扩充部分没有提及,不知道是裁剪之后训练数据足够多还是做了其他的扩充手段。

个人习惯用2D的手段训练,可以借鉴的地方:

1、卷积代替pooling

2、DenseNet作为基础骨干网络

3、Dropout(平时做分割基本没用过dropout,可尝试)

原文地址:https://www.cnblogs.com/xiangfeidemengzhu/p/8821447.html

时间: 2024-10-07 22:56:17

【阅读笔记】3D Densely Convolutional Networks for Volumetric Segmentation的相关文章

论文阅读笔记:Fully Convolutional Networks for Semantic Segmentation

这是CVPR 2015拿到best paper候选的论文. 论文下载地址:Fully Convolutional Networks for Semantic Segmentation 尊重原创,转载请注明:http://blog.csdn.net/tangwei2014 1.概览&主要贡献 提出了一种end-to-end的做semantic segmentation的方法,简称FCN. 如下图所示,直接拿segmentation 的 ground truth作为监督信息,训练一个端到端的网络,让

FCN笔记(Fully Convolutional Networks for Semantic Segmentation)

FCN笔记(Fully Convolutional Networks for Semantic Segmentation) (1)FCN做的主要操作 (a)将之前分类网络的全连接层都换成卷积层, FCN将全连接层换成了卷积层,最后可以生成一个heatmap.卷积层的大小即为 (1,1,4096).(1,1,4096).(1,1,1000).FCN在做前向和后向计算时,都比之前的方法要快,FCN生成一个10*10的结果,需要22ms,而之前的方法生个1个结果,就需要1.2ms,如果是100个结果,

论文笔记《Fully Convolutional Networks for Semantic Segmentation》

<Fully Convolutional Networks for Semantic Segmentation>,CVPR 2015 best paper,pixel level, fully supervised. 主要思路是把CNN改为FCN,输入一幅图像后直接在输出端得到dense prediction,也就是每个像素所属的class,从而得到一个end-to-end的方法来实现image  semantic segmentation. 我们已经有一个CNN模型,首先要把CNN的全连接层

RCNN学习笔记(8):Fully Convolutional Networks for Semantic Segmentation(全卷积网络FCN)

[论文信息] <Fully Convolutional Networks for Semantic Segmentation> CVPR 2015 best paper Reference link: http://blog.csdn.net/tangwei2014 http://blog.csdn.net/u010025211/article/details/51209504 概览&主要贡献 提出了一种end-to-end的做semantic segmentation的方法,简称FC

论文学习:Fully Convolutional Networks for Semantic Segmentation

发表于2015年这篇<Fully Convolutional Networks for Semantic Segmentation>在图像语义分割领域举足轻重. 1 CNN 与 FCN 通常CNN网络在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature map)映射成一个固定长度的特征向量.以AlexNet为代表的经典CNN结构适合于图像级的分类和回归任务,因为它们最后都期望得到整个输入图像的一个数值描述(概率),比如AlexNet的ImageNet模型输出一个1000维的

Fully Convolutional Networks for semantic Segmentation(深度学习经典论文翻译)

摘要 卷积网络在特征分层领域是非常强大的视觉模型.我们证明了经过端到端.像素到像素训练的卷积网络超过语义分割中最先进的技术.我们的核心观点是建立"全卷积"网络,输入任意尺寸,经过有效的推理和学习产生相应尺寸的输出.我们定义并指定全卷积网络的空间,解释它们在空间范围内dense prediction任务(预测每个像素所属的类别)和获取与先验模型联系的应用.我们改编当前的分类网络(AlexNet [22] ,the VGG net [34] , and GoogLeNet [35] )到完

【CV论文阅读】Two stream convolutional Networks for action recognition in Vedios

论文的三个贡献 (1)提出了two-stream结构的CNN,由空间和时间两个维度的网络组成. (2)使用多帧的密集光流场作为训练输入,可以提取动作的信息. (3)利用了多任务训练的方法把两个数据集联合起来. Two stream结构 视屏可以分成空间与时间两个部分,空间部分指独立帧的表面信息,关于物体.场景等:而时间部分信息指帧间的光流,携带着帧之间的运动信息.相应的,所提出的网络结构由两个深度网络组成,分别处理时间与空间的维度. 可以看到,每个深度网络都会输出一个softmax层,最后会通过

FCN:Fully Convolutional Networks for Semantic Segmentation

今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf 三位大佬:Jonathan Long Evan Shelhamer Trevor Darrell 这个网址是网上一个大佬记录的FCN的博客,同时深深感受到了自己与大佬的差距,但还是硬着头皮把论文阅读完成,贴出网址,和大家一起学习:https://blog.csdn.net/happyer8

中文版 R-FCN: Object Detection via Region-based Fully Convolutional Networks

R-FCN: Object Detection via Region-based Fully Convolutional Networks 摘要 我们提出了基于区域的全卷积网络,以实现准确和高效的目标检测.与先前的基于区域的检测器(如Fast/Faster R-CNN [6,18])相比,这些检测器应用昂贵的每个区域子网络数百次,我们的基于区域的检测器是全卷积的,几乎所有计算都在整张图像上共享.为了实现这一目标,我们提出了位置敏感分数图,以解决图像分类中的平移不变性与目标检测中的平移变化之间的困