使用寄存器点亮LED(第1节)—GPIO功能框图讲解

GPIO简介

GPIO 是通用输入输出端口的简称,简单来说就是 STM32 可控制的引脚, STM32 芯片的 GPIO 引脚与外部设备连接起来,从而实现与外部通讯、控制以及数据采集的功能。STM32 芯片的 GPIO 被分成很多组,每组有 16 个引脚,如型号为 STM32F103VET6 型号的。芯片有 GPIOA、 GPIOB、 GPIOC 至 GPIOE 共 5 组 GPIO,芯片一共 100 个引脚,其中GPIO 就占了一大部分,所有的 GPIO 引脚都有基本的输入输出功能。

最基本的输出功能是由 STM32 控制引脚输出高、低电平,实现开关控制,如把 GPIO引脚接入到 LED 灯,那就可以控制 LED 灯的亮灭,引脚接入到继电器或三极管,那就可以通过或三极管控制外部大功率电路的通断。

最基本的输入功能是检测外部输入电平,如把 GPIO 引脚连接到按键,通过电平高低区分按键是否被按下。

GPIO的框图讲解

下面我们按图中的编号对 GPIO 端口的结构部件进行说明。

1. 保护二极管及上、下拉电阻

引脚的两个保护二级管可以防止引脚外部过高或过低的电压输入,当引脚电压高于VDD 时, 上方的二极管导通,当引脚电压低于 VSS 时,下方的二极管导通,防止不正常电压引入芯片导致芯片烧毁。尽管有这样的保护,并不意味着 STM32 的引脚能直接外接大功率驱动器件,如直接驱动电机,强制驱动要么电机不转,要么导致芯片烧坏,必须要加大功率及隔离电路驱动。

2. P-MOS 管和 N-MOS

GPIO 引脚线路经过两个保护二极管后,向上流向“输入模式”结构,向下流向“输出模式”结构。先看输出模式部分,线路经过一个由 P-MOS 和 N-MOS 管组成的单元电路。这个结构使 GPIO 具有了“推挽输出”和“开漏输出”两种模式。

所谓的推挽输出模式,是根据这两个 MOS 管的工作方式来命名的。在该结构中输入高电平时,经过反向后,上方的 P-MOS 导通,下方的 N-MOS 关闭,对外输出高电平;而在该结构中输入低电平时,经过反向后, N-MOS 管导通, P-MOS 关闭,对外输出低电平。当引脚高低电平切换时,两个管子轮流导通, P 管负责灌电流, N 管负责拉电流,使其负载能力和开关速度都比普通的方式有很大的提高。推挽输出的低电平为 0 伏,高电平为 3.3伏,具体参考图 8-2,它是推挽输出模式时的等效电路。

而在开漏输出模式时,上方的 P-MOS 管完全不工作。如果我们控制输出为 0,低电平,则 P-MOS 管关闭,N-MOS 管导通,使输出接地,若控制输出为 1 (它无法直接输出高电平)时,则 P-MOS 管和 N-MOS 管都关闭,所以引脚既不输出高电平,也不输出低电平,为高阻态。为正常使用时必须外部接上拉电阻,参考图 8-3 中等效电路。它具有“线与”特性,也就是说,若有很多个开漏模式引脚连接到一起时,只有当所有引脚都输出高阻态,才由上拉电阻提供高电平,此高电平的电压为外部上拉电阻所接的电源的电压。若其中一个引脚为低电平, 那线路就相当于短路接地,使得整条线路都为低电平,0 伏。

推挽输出模式一般应用在输出电平为 0 和
3.3 伏而且需要高速切换开关状态的场合。在 STM32 的应用中,除了必须用开漏模式的场合,我们都习惯使用推挽输出模式。

开漏输出一般应用在 I2C、
SMBUS 通讯等需要“线与”功能的总线电路中。除此之外,还用在电平不匹配的场合,如需要输出
5 伏的高电平,就可以在外部接一个上拉电阻,
上拉电源为 5 伏,
并且把 GPIO 设置为开漏模式,当输出高阻态时,由上拉电阻和电源向外输出 5 伏的电平,具体见图 8-4。

3. 输出数据寄存器
        前面提到的 双 MOS
管结构电路的输入信号,是由GPIO“输出数据寄存器GPIOx_ODR”提供的,因此我们通过修改输出数据寄存器的值就可以修改 GPIO
引脚的输出电平。而“置位/复位寄存器 GPIOx_BSRR”可以通过修改输出数据寄存器的值从而影响电路的输出。

4. 复用功能输出

“复用功能输出”中的“复用”是指 STM32 的其它片上外设对 GPIO 引脚进行控制,此时 GPIO 引脚用作该外设功能的一部分,算是第二用途。从其它外设引出来的“复用功能输出信号”与 GPIO 本身的数据据寄存器都连接到双 MOS 管结构的输入中,通过图中的梯形结构作为开关切换选择。例如我们使用 USART 串口通讯时,需要用到某个 GPIO 引脚作为通讯发送引脚,这个时候就可以把该 GPIO 引脚配置成 USART 串口复用功能,由串口外设控制该引脚,发送数据。

 // GPIOB 16 个 IO 全部输出 0XFF
 GPIOB->ODR = 0XFF;

5. 输入数据寄存器

看 GPIO 结构框图的上半部分, GPIO 引脚经过内部的上、下拉电阻, 可以配置成上下拉输入,然后再连接到施密特触发器,信号经过触发器后,模拟信号转化为 0、 1 的数字

信号,然后存储在“输入数据寄存器 GPIOx_IDR”中,通过读取该寄存器就可以了解GPIO 引脚的电平状态。

// 读取 GPIOB 端口的 16 位数据值
uint16_t temp;
    temp = GPIOB->IDR;

6. 复用功能输入

与“复用功能输出”模式类似,在“复用功能输入模式”时, GPIO 引脚的信号传输到STM32 其它片上外设,由该外设读取引脚状态。同样,如我们使用 USART 串口通讯时,需要用到某个 GPIO 引脚作为通讯接收引脚,这个时候就可以把该 GPIO 引脚配置成 USART 串口复用功能,使 USART 可以通过该通讯引脚的接收远端数据。

7. 模拟输入输出

当 GPIO 引脚用于 ADC 采集电压的输入通道时,用作“模拟输入”功能,此时信号是不经过施密特触发器的,因为经过施密特触发器后信号只有
0、 1 两种状态,所以
ADC 外设要采集到原始的模拟信号,信号源输入必须在施密特触发器之前。类似地,当
GPIO 引脚用于 DAC 作为模拟电压输出通道时,此时作为“模拟输出”功能,
DAC 的模拟信号输出就不经过双 MOS 管结构,模拟信号直接输出到引脚。

GPIO 工作模式

总结一下,由 GPIO 的结构决定了 GPIO 可以配置成以下模式:

typedef enum
{
GPIO_Mode_AIN = 0x0, // 模拟输入
GPIO_Mode_IN_FLOATING = 0x04, // 浮空输入
GPIO_Mode_IPD = 0x28, // 下拉输入
GPIO_Mode_IPU = 0x48, // 上拉输入
GPIO_Mode_Out_OD = 0x14, // 开漏输出
GPIO_Mode_Out_PP = 0x10, // 推挽输出
GPIO_Mode_AF_OD = 0x1C, // 复用开漏输出
GPIO_Mode_AF_PP = 0x18 // 复用推挽输出
} GPIOMode_TypeDef;

在固件库中, GPIO 总共有 8 种细分的工作模式,稍加整理可以大致归类为以下三类:

1. 输入模式(模拟/浮空/上拉/下拉)

在输入模式时, 施密特触发器打开, 输出被禁止,可通过输入数据寄存器 GPIOx_IDR读取 I/O 状态。 其中输入模式,可设置为上拉、下拉、 浮空和模拟输入四种。 上拉和下拉输入很好理解, 默认的电平由上拉或者下拉决定。浮空输入的电平是不确定的,完全由外部的输入决定,一般接按键的时候用的是这个模式。模拟输入则用于 ADC 采集。

2. 输出模式(推挽/开漏)

在输出模式中, 推挽模式时双 MOS 管以轮流方式工作,输出数据寄存器 GPIOx_ODR可控制 I/O 输出高低电平。开漏模式时,只有 N-MOS 管工作,输出数据寄存器可控制 I/O输出高阻态或低电平。 输出速度可配置,有 2MHz\10MHz\50MHz 的选项。此处的输出速度即 I/O 支持的高低电平状态最高切换频率,支持的频率越高,功耗越大,如果功耗求不严格,把速度设置成最大即可。在输出模式时施密特触发器是打开的,即输入可用,通过输入数据寄存器 GPIOx_IDR可读取 I/O 的实际状态。

3. 复用功能(推挽/开漏)
      复用功能模式中,输出使能,输出速度可配置,可工作在开漏及推挽模式,但是输出信号源于其它外设,输出数据寄存器
GPIOx_ODR 无效;输入可用,通过输入数据寄存器可获取 I/O 实际状态,但一般直接用外设的寄存器来获取该数据信号。通过对 GPIO 寄存器写入不同的参数,就可以改变 GPIO
的工作模式,再强调一下,要了解具体寄存器时一定要查阅《STM32F10X-中文参考手册》中对应外设的寄存器说明。

在 GPIO 外设中, 控制端口高低控制寄存器 CRH 和 CRL 可以配置每个 GPIO 的工作模式和工作的速度, 每 4 个位控制一个
IO, CRH 控制端口的高八位, CRL 控制端口的低 8 位,具体的看
CRH 和 CRL 的寄存器描述。

原文地址:https://www.cnblogs.com/wenshinlee/p/8808377.html

时间: 2024-11-09 09:54:45

使用寄存器点亮LED(第1节)—GPIO功能框图讲解的相关文章

使用寄存器点亮LED——编程实战

stm32的编程和stc89c51还是存在着很多思想上的不同的,在51单片机中,我们点亮LED灯,只用给对应IO高低电平就可以了,而stm32中,就一个简单的GPIO,我们也需要配置好几个寄存器,而且,就算配置好GPIO寄存器,我们还必须有一步不能缺少的操作,那就是开启对应GPIO的时钟.在stm32的编程中,开启对应时钟是必不可少的一个操作,而且,开启时钟的操作必须在配置相应寄存器之前,以GPIO为例,如果我们先配置GPIO的寄存器,不开启时钟或者先配置GPIO寄存器,最后再开启时钟,都不能正

寄存器点亮LED

看了视频,也试着用操作寄存器的方法点亮下LED. 应用keil5编译软件. 1.首先创建新工程. 如何创建工程就不介绍了 2.添加启动文件 启动文件是由官方给出的.关于103的就有很多种. 大部分都是容量的不同.我们这里用的是startup_stm32f10x_hd.s,因为我们的芯片是STM32F103ZET6,这里是大容量的 这里可以查看ST公司官方给出的选项参考 在其他的文章中我们会详细解释这个启动文件,这里就先不介绍了.启动文件就是汇编编写的文件,用于调入__main,进入C编程. 3.

使用寄存器点亮LED等

最基本的输入功能是检测外部输入电平,如把 GPIO引脚连接到按键,通过电平高低区分按键是否被按下. 基本结构分析 2. P-MOS管和 N-MOS管 main.c中的main函数

bb_black_学习笔记——(3)点亮LED之shell命令

这次改变一下笔记的结构,直接上图.点亮LED永远是学习MCU,ARM,FPGA的入门例程,可以说是经典例程.这里笔者也从点亮LED开始开始ARM学习之旅. 接下来就开始点亮LED之旅,在开始之前需要向读者说明:本文作者也是一个ARM初学者,学习过程中也是在网上查找各种资料,最后总结于此.可以确定实验的过程中有好多地方笔者自己也是没有搞明白的,所以请读者原谅不能写的太透彻. 第一步:要点亮LED,首先需要了解GPIO的硬件位置,这样才能去操作相应的IO口,实现点灯目的 1.连接好bb-black之

arm9 点亮led程序优化导致全亮问题

如需转载请注明出处 本实验是arm9 裸板程序,主要功能是循环点亮4个led. 参考伟山东的<嵌入式linux应用开发>点亮led节. 电路图如下: 代码如下: head.s .text .global _start _start: ldr r0, =0x56000010 @ WATCHDOG寄存器地址 mov r1, #0x0 str r1, [r0] @ 写入0,禁止WATCHDOG,否则CPU会不断重启 ldr sp, =1024*4 @ 设置堆栈,注意:不能大于4k, 因为现在可用的内

【蓝牙低功耗BLE】控制GPIO来点亮LED

这节讲一下最简单的,也是最基础的东西,CC2540的IO操作,把PORT口当做GPIO来用,废话不多说,往下看. 1.硬件电路 硬件电路时最简单的,用一根GPIO去控制LED灯,由于GPIO作为output,所以也不用管GPIO的模式. 还是挺简单的,控制左边GPIO的高低来开关LED灯. 2.相关寄存器 P0SEL      P0[7:0]功能设置寄存器,默认设置为普通I/O口 P0INP P0[7:0]作为输入口时电路模式寄存器,可以设置为输入上下拉等 P0 P0[7:0]可以位寻址的I/O

嵌入式Linux裸机开发(一)——点亮Led

嵌入式Linux裸机开发(一)--点亮Led 开发板:友善之臂smart210 一.电路图查阅 1.底板电路图 查阅开发板底板电路图,查阅LED相关部分 LED电路工作原理: LED的正极接3.3V,负极接地时导通,LED发光. 开发板共有四颗LED,正极接3.3V,负极接开发板的LED1_LED4引脚,如果LED要点亮则需要输入低电平. 2.核心板电路图 查阅核心板电路图可知,LED1-LED4接在SoC的GPJ2_0-GPJ2_3,通过控制GPJ2_0-GPJ2_3的寄存器使对应GPIO引脚

TQ2440按键点亮LED驱动程序

一,硬件分析: 1.打开TQ2440的底板原理图找到按键测试的模块,如下图所示: 从图我们知道,控制按键k1 k2 k3 k4 的管脚为EINT1 EINT4 EINT2 EINT0 ,当按键按下时,管脚输出低电平,当按键没有被按下时,管脚输出高电平. 2.打开TQ2440核心板原理图找到EINT1  EINT4 EINT2 EINT0所对应的cpu控制引脚,如下图所示: 从图我们可以知道,EINT1  EINT4 EINT2 EINT0 对应的cpu控制引脚为GPF1 GPF4 GPF2 GP

Mini2440上的第一个程序——点亮Led

手头的Mini2440搁置了两年半之后,我再次决定拿出它,重新尝试嵌入式Linux的学习. 我使用的是友善之臂的Mini2440开发板.韦东山的<嵌入式Linux应用开发完成手册>及其视频教程.所以,本篇文章中所涉及到的各种软件均可在以下两处找到: Mini2440开发板的配套光盘 韦东山JZ2440开发板的光盘 JZ2440是韦东山出品的开发板,作为<嵌入式Linux应用开发完全手册>的配套硬件,它和Mini2440相差无几,所以我这里用的是Mini2440. 一.目标 动手之前