【算法导论】动态规划之“矩阵链乘法”问题

上一篇里,介绍了动态规划的“钢管切割”问题,这一次来看看“矩阵链乘法”。所谓矩阵链乘法就是一个或一个以上的矩阵连续相乘,这里主要关注的是乘法的次数。

一、概述

以两个矩阵相乘为例,A1*A2,A1和A2为两个矩阵,假设A1的行列数是p*q,A2的行列数是q*r。注意这里由于是A1乘以A2,所以A1的列数要等于A2的行数,否则无法做矩阵乘法,满足上述条件的矩阵,我们称之为“相容”的。那么对于A1*A2而言,我们需要分别执行p*r次对应A1的行元素乘以A2的列元素,根据线性代数知识,不难得出我们一共需要执行p*q*r次乘法。

对于两个矩阵相乘,一旦矩阵的大小确定下来了,那么所需执行的乘法次数就确定下来了。那么对于两个以上的矩阵呢?是不是也是这样呢。实际上,对于多个矩阵相乘,乘法执行的次数与“划分”有关。例如:

以矩阵链<A1,A2,A3>为例,假设三个矩阵的规模分别为10X100,100X5和5X50。

①以((A1*A2)*A3)方式划分,乘法执行次数为:10*100*5+10*5*50=5000+2500=7500次

②以(A1*(A2*A3))方式划分,乘法执行次数为:100*5*50+10*100*50=25000+50000=75000次

我们可以发现,对于同样的矩阵链<A1,A2,A3>相乘而言,不同的划分,乘法次数居然相差10倍。

二、如何获得最佳的矩阵链乘法划分和最少次数

其实这里与“钢管切割”有相似之处,在钢管切割问题中,我们使用一个一维数组来存储最佳收入,另一个一维数组来存储切割的划分处。

而这里,我们也可以将矩阵链看成一根要分割的“钢管”,只是这里记录的两个数组需要是二维的,因为我们需要记录的不仅是从哪里“断开”,还需要记录"每一段"到哪里截止。如下图:

使用一个长度为n+1的一维数组p来记录每个矩阵的规模,其中n为矩阵下标i的范围1~n,例如对于矩阵Ai而言,它的规模应该是p[i-1]到p[i]。由于i是从1到n取值,所以数组p的下标是从0到n。

用于存储最少乘法执行次数和最佳分段方式的结构是两个二维数组m和s,都是从1~n取值。m[i][j]记录矩阵链<Ai,Ai+1,...,Aj>的最少乘法执行次数,而s[i][j]则记录 最优质m[i][j]的分割点k。

需要注意的一点是当i=j时,m[i][j]=m[i][i]=0,因为一个矩阵不需要任何乘法。

假设矩阵链从Ai到Aj,有j-i+1个矩阵,我们从k处分开,将矩阵链分为Ai~Ak和Ak+1到Aj两块,那么我们可以比较容易的给出m[i][j]从k处分隔的公式:

m[i][j]=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];

在一组确定的i和j值的情况下,要使m[i][j]的值最小,我们只要在所有的k取值中,i<=k<j,寻找一个让m[i][j]最小的值即可。

假设L为矩阵链的长度,那么L=j-i+1。当L=1时,只有一个矩阵,不需要计算。那么我们可以从L=2到n进行循环,对每个合理的i和j值的组合,遍历所有k值对应的m[i][j]值,将最小的一个记录下来,存储到m[i][j]中,并将对应的k存储到s[i][j]中,就得到了我们想要的结果。

根据上面的分析,不难给出过程的代码,注意这里也是使用的自底向上的方法,参看“钢管切割”

//Ai矩阵的行列分别是p[i-1]和p[i],1<=i<=n

/*
 * 求解最少次数的乘法括号划分方案
 */
void Matrix_Chain(int* p, int n, int** m, int** s) {

	//①将对角线上的值先赋值为0
	for (int i = 1; i <= n; i++) {
		m[i][i] = 0;
	}

	int l = 0; //l为矩阵链的长度

	//m[i][j]的第一个参数
		int i = 0;

	//m[i][j]的第二个参数
	int j = 0;

	int tmp = 0;

	//②以长度L为划分,L从2开始到n
	for (l = 2; l <= n; l++) {

		//循环第一个参数,因为l的长度至少为2,所以i和j在这个循环里面肯定不相等
		for (i = 1; i <= n - l + 1; i++) {
			//因为j-i+1=l,所以j=l+i-1
			j = i + l - 1;

			//给m[i][j]赋初值,这里要寻找m[i][j]的最小值,本来应当给m[i][j]赋值一个正无穷,但是这里直接赋一个i=j时候的特值也可以
			m[i][j] = m[i][i] + m[i + 1][j] + p[i - 1] * p[i] * p[j];
			s[i][j] = i;

			//对于每个特定的i和j的组合,遍历此时所有的合适k值,k大于等于i小于j
			for (int k = i + 1; k < j; k++) { //这里k不能等于j,因为后面要m[k+1][j],不然k+1就比j大了

				tmp = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];

				if (tmp < m[i][j]) {
					m[i][j] = tmp;
					s[i][j] = k;
				}
			}
		}
	}
}

经过上面的代码,我们就求得了每种i和j组合对应的最小乘法次数和对应的最佳分割处s[i][j]。

三、输出最优构造划分:

经过运行上面的代码,我们就准备好了s[i][j],其中包含最佳分割信息。我们可以使用一种类似于中序遍历的方法来输出划分方式,比如对<A1,A2,A3,A4,A5>和他们对应的下标数组p而言。

void print_optimal_parens(int** s, int i, int j) {
	if (i == j) {
		cout << "A" << i;
	} else {
		cout << "(";
		print_optimal_parens(s, i, s[i][j]);
		print_optimal_parens(s, s[i][j] + 1, j);
		cout << ")";
	}
}

比如对于数组p={5,6,2,9,7,6}和<A1,A2,A3,A4,A5>经过上面两段代码的调用,输出划分结果:

((A1A2)((A3A4)A5))

最少乘法次数为:330次

时间: 2024-10-13 23:37:21

【算法导论】动态规划之“矩阵链乘法”问题的相关文章

算法导论--动态规划(矩阵链乘法)

矩阵链乘法问题 给定一个n个矩阵的序列?A1,A2,A3...An?,我们要计算他们的乘积:A1A2A3...An.因为矩阵乘法满足结合律,加括号不会影响结果.可是不同的加括号方法.算法复杂度有非常大的区别: 考虑矩阵链:?A1,A2,A3?.三个矩阵规模分别为10×100.100×5.5×50 假设按((A1A2)A3)方式,须要做10?100?5=5000次,再与A3相乘,又须要10?5?50=2500,共须要7500次运算: 假设按(A1(A2A3))方式计算.共须要100?5?50+10

算法导论------------------动态规划之矩阵链问题

[问题描述] 给定有n个连乘矩阵的维数,要求计算其采用最优计算次序时所用的乘法次数,即所要求计算的乘法次数最少.例如,给定三个连乘矩阵{A1,A2,A3}的维数分别是10*100,100*5和5*50,采用(A1A2)A3,乘法次数为10*100*5+10*5*50=7500次,而采用A1(A2A3),乘法次数为100*5*50+10*100*50=75000次乘法,显然,最好的次序是(A1A2)A3,乘法次数为7500次. 分析: 矩阵链乘法问题描述: 给定由n个矩阵构成的序列[A1,A2,.

算法13---动态规划矩阵链乘法

算法13---动态规划矩阵链乘法 矩阵链乘法是动态规划里面使用到的一个例子 1 两个矩阵的计算 那么对于一个矩阵的乘法,首先如果是两个矩阵的乘法,那么如何实现呢? 注意到我们使用二维数组表示矩阵,但是二维数组不能作为函数的返回值.具体实现如下 1 #include <stdio.h> 2 #include <stdlib.h> 3 #include <math.h> 4 5 #define a_rows 3 6 #define a_columns 4 7 #define

[CLRS][CH 15.2] 动态规划之矩阵链乘法

摘要 整理了矩阵链乘法的动态规划思路. 题目 给定n个要相乘的矩阵构成的序列<A1, A2, ... , An>,其中 i=1, 2, ..., n,矩阵 Ai 的维数为pi-1*pi.计算乘积 A1A2...An 的最小代价的矩阵相乘循序. 补充:矩阵乘法满足结合律,例如,乘积 A1A2A3A4 共有五种不同加括号结合形式.不同的结合形式极大的影响运算效率.当且仅当矩阵A和B相容(A.列 = B.行)时,才可以计算矩阵乘法.例如:矩阵A为p*q, 矩阵B为q*r,则相乘后得到的矩阵C为p*r

动态规划之矩阵链乘法

矩阵链相乘 矩阵链乘法 求解矩阵链相乘问题时动态规划算法的另一个例子.给定一个n个矩阵的序列(矩阵链)<A1,A2,...,An>,我们希望计算它们的乘积 A1A2...An ?两个矩阵A和B只有相容(compatible),即A的列数等于B的行数时,才能相乘.如果A是p×q的矩阵,B是q×r的矩阵,那么乘积C是p×r的矩阵.计算C所需要时间由第8行的标量乘法的次数决定的,即pqr. ? ?以矩阵链<A1,A2,A3>为例,来说明不同的加括号方式会导致不同的计算代价.假设三个矩阵的

《算法导论》读书笔记之动态规划—矩阵链乘法

前言:今天接着学习动态规划算法,学习如何用动态规划来分析解决矩阵链乘问题.首先回顾一下矩阵乘法运算法,并给出C++语言实现过程.然后采用动态规划算法分析矩阵链乘问题并给出C语言实现过程. 1.矩阵乘法 从定义可以看出:只有当矩阵A的列数与矩阵B的行数相等时A×B才有意义.一个m×r的矩阵A左乘一个r×n的矩阵B,会得到一个m×n的矩阵C.在计算机中,一个矩阵说穿了就是一个二维数组.一个m行r列的矩阵可以乘以一个r行n列的矩阵,得到的结果是一个m行n列的矩阵,其中的第i行第j列位置上的数等于前一个

动态规划-矩阵链乘法

问题描述: 给定由n个要相乘的矩阵构成的序列(链)<A1,A2,...,An>,要计算乘积A1A2...An,可以将两个矩阵相乘的标准算法作为一个子程序,通过加括号确定计算的顺序(对同一矩阵链,不同的计算顺序所需要的计算次数大不相同). 目标问题:给定n个矩阵构成的矩阵链<A1,A2,...,An>,其中,i=1,2,...,n,矩阵Ai的维数为pi-1×pi,对乘积A1A2...An以一种最小计算次数加全部括号. 穷尽搜索: 令P(n)表示一串n个矩阵可能的加全部方案数.当n=1

第十五章 动态规划——矩阵链乘法

前言:今天接着学习动态规划算法,学习如何用动态规划来分析解决矩阵链乘问题.首先回顾一下矩阵乘法运算法,并给出C++语言实现过程.然后采用动态规划算法分析矩阵链乘问题并给出C语言实现过程. 1.矩阵乘法 从定义可以看出:只有当矩阵A的列数与矩阵B的行数相等时A×B才有意义.一个m×r的矩阵A左乘一个r×n的矩阵B,会得到一个m×n的矩阵C.在计算机中,一个矩阵说穿了就是一个二维数组.一个m行r列的矩阵可以乘以一个r行n列的矩阵,得到的结果是一个m行n列的矩阵,其中的第i行第j列位置上的数等于前一个

矩阵链乘法(动态规划)

一 题意描述: 给定由n个要相乘的矩阵构成的序列(链)<A1,A2,A3,····An>.由于矩阵满足结合律(加括号方式表示结合方式),不同的计算方式导致的求出最终计算结果的代价相异,有的花的时间很少,有的方式所花时间很多,那么下面的任务就是求出算出结果所需要的最少时间及一个最优解. 二 思路分析: 设p(n)表示一串n个矩阵可能的加全部括号方案数.当n=1时,只有一个矩阵,此时p(1)=1.当n>=2时,一个加全部括号的矩阵乘积等于两个加全部括号的子矩阵乘积的乘积,而且这两个子乘积之间