scikit-learn的线性回归模型

来自 http://blog.csdn.net/jasonding1354/article/details/46340729

内容概要

  • 如何使用pandas读入数据
  • 如何使用seaborn进行数据的可视化
  • scikit-learn的线性回归模型和使用方法
  • 线性回归模型的评估测度
  • 特征选择的方法

作为有监督学习,分类问题是预测类别结果,而回归问题是预测一个连续的结果。

1. 使用pandas来读取数据

Pandas是一个用于数据探索、数据处理、数据分析的Python库

In [1]:

import pandas as pd

In [2]:

# read csv file directly from a URL and save the results
data = pd.read_csv(‘http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv‘, index_col=0)

# display the first 5 rows
data.head()

Out[2]:

  TV Radio Newspaper Sales
1 230.1 37.8 69.2 22.1
2 44.5 39.3 45.1 10.4
3 17.2 45.9 69.3 9.3
4 151.5 41.3 58.5 18.5
5 180.8 10.8 58.4 12.9

上面显示的结果类似一个电子表格,这个结构称为Pandas的数据帧(data frame)。

pandas的两个主要数据结构:Series和DataFrame:

  • Series类似于一维数组,它有一组数据以及一组与之相关的数据标签(即索引)组成。
  • DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典。

In [3]:

# display the last 5 rows
data.tail()

Out[3]:

  TV Radio Newspaper Sales
196 38.2 3.7 13.8 7.6
197 94.2 4.9 8.1 9.7
198 177.0 9.3 6.4 12.8
199 283.6 42.0 66.2 25.5
200 232.1 8.6 8.7 13.4

In [4]:

# check the shape of the DataFrame(rows, colums)
data.shape

Out[4]:

(200, 4)

特征:

  • TV:对于一个给定市场中单一产品,用于电视上的广告费用(以千为单位)
  • Radio:在广播媒体上投资的广告费用
  • Newspaper:用于报纸媒体的广告费用

响应:

  • Sales:对应产品的销量

在这个案例中,我们通过不同的广告投入,预测产品销量。因为响应变量是一个连续的值,所以这个问题是一个回归问题。数据集一共有200个观测值,每一组观测对应一个市场的情况。

In [5]:

import seaborn as sns

%matplotlib inline

In [6]:

# visualize the relationship between the features and the response using scatterplots
sns.pairplot(data, x_vars=[‘TV‘,‘Radio‘,‘Newspaper‘], y_vars=‘Sales‘, size=7, aspect=0.8)

Out[6]:

<seaborn.axisgrid.PairGrid at 0x82dd890>

seaborn的pairplot函数绘制X的每一维度和对应Y的散点图。通过设置size和aspect参数来调节显示的大小和比例。可以从图中看出,TV特征和销量是有比较强的线性关系的,而Radio和Sales线性关系弱一些,Newspaper和Sales线性关系更弱。通过加入一个参数kind=’reg’,seaborn可以添加一条最佳拟合直线和95%的置信带。

In [7]:

sns.pairplot(data, x_vars=[‘TV‘,‘Radio‘,‘Newspaper‘], y_vars=‘Sales‘, size=7, aspect=0.8, kind=‘reg‘)

Out[7]:

<seaborn.axisgrid.PairGrid at 0x83b76f0>

2. 线性回归模型

优点:快速;没有调节参数;可轻易解释;可理解

缺点:相比其他复杂一些的模型,其预测准确率不是太高,因为它假设特征和响应之间存在确定的线性关系,这种假设对于非线性的关系,线性回归模型显然不能很好的对这种数据建模。

线性模型表达式: y=β0+β1x1+β2x2+...+βnxn 其中

  • y是响应
  • β0是截距
  • β1是x1的系数,以此类推

在这个案例中: y=β0+β1∗TV+β2∗Radio+...+βn∗Newspaper

(1)使用pandas来构建X和y

  • scikit-learn要求X是一个特征矩阵,y是一个NumPy向量
  • pandas构建在NumPy之上
  • 因此,X可以是pandas的DataFrame,y可以是pandas的Series,scikit-learn可以理解这种结构

In [8]:

# create a python list of feature names
feature_cols = [‘TV‘, ‘Radio‘, ‘Newspaper‘]

# use the list to select a subset of the original DataFrame
X = data[feature_cols]

# equivalent command to do this in one line
X = data[[‘TV‘, ‘Radio‘, ‘Newspaper‘]]

# print the first 5 rows
X.head()

Out[8]:

  TV Radio Newspaper
1 230.1 37.8 69.2
2 44.5 39.3 45.1
3 17.2 45.9 69.3
4 151.5 41.3 58.5
5 180.8 10.8 58.4

In [9]:

# check the type and shape of X
print type(X)
print X.shape
<class ‘pandas.core.frame.DataFrame‘>
(200, 3)

In [10]:

# select a Series from the DataFrame
y = data[‘Sales‘]

# equivalent command that works if there are no spaces in the column name
y = data.Sales

# print the first 5 values
y.head()

Out[10]:

1    22.1
2    10.4
3     9.3
4    18.5
5    12.9
Name: Sales, dtype: float64

In [11]:

print type(y)
print y.shape
<class ‘pandas.core.series.Series‘>
(200,)

(2)构造训练集和测试集

In [12]:

from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)

In [14]:

# default split is 75% for training and 25% for testing
print X_train.shape
print y_train.shape
print X_test.shape
print y_test.shape
(150, 3)
(150,)
(50, 3)
(50,)

(3)Scikit-learn的线性回归

In [15]:

from sklearn.linear_model import LinearRegression

linreg = LinearRegression()

linreg.fit(X_train, y_train)

Out[15]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

In [16]:

print linreg.intercept_
print linreg.coef_
2.87696662232
[ 0.04656457  0.17915812  0.00345046]

In [17]:

# pair the feature names with the coefficients
zip(feature_cols, linreg.coef_)

Out[17]:

[(‘TV‘, 0.046564567874150253),
 (‘Radio‘, 0.17915812245088836),
 (‘Newspaper‘, 0.0034504647111804482)]

y=2.88+0.0466∗TV+0.179∗Radio+0.00345∗Newspaper

如何解释各个特征对应的系数的意义?

  • 对于给定了Radio和Newspaper的广告投入,如果在TV广告上每多投入1个单位,对应销量将增加0.0466个单位
  • 更明确一点,加入其它两个媒体投入固定,在TV广告上没增加1000美元(因为单位是1000美元),销量将增加46.6(因为单位是1000)

(4)预测

In [18]:

y_pred = linreg.predict(X_test)

3. 回归问题的评价测度

对于分类问题,评价测度是准确率,但这种方法不适用于回归问题。我们使用针对连续数值的评价测度(evaluation metrics)。

下面介绍三种常用的针对回归问题的评价测度

In [21]:

# define true and predicted response values
true = [100, 50, 30, 20]
pred = [90, 50, 50, 30]

(1)平均绝对误差(Mean Absolute Error, MAE)

1n∑ni=1|yi−yi^|

(2)均方误差(Mean Squared Error, MSE)

1n∑ni=1(yi−yi^)2

(3)均方根误差(Root Mean Squared Error, RMSE)

1n∑ni=1(yi−yi^)2−−−−−−−−−−−−−√

In [24]:

from sklearn import metrics
import numpy as np
# calculate MAE by hand
print "MAE by hand:",(10 + 0 + 20 + 10)/4.

# calculate MAE using scikit-learn
print "MAE:",metrics.mean_absolute_error(true, pred)

# calculate MSE by hand
print "MSE by hand:",(10**2 + 0**2 + 20**2 + 10**2)/4.

# calculate MSE using scikit-learn
print "MSE:",metrics.mean_squared_error(true, pred)

# calculate RMSE by hand
print "RMSE by hand:",np.sqrt((10**2 + 0**2 + 20**2 + 10**2)/4.)

# calculate RMSE using scikit-learn
print "RMSE:",np.sqrt(metrics.mean_squared_error(true, pred))
MAE by hand: 10.0
MAE: 10.0
MSE by hand: 150.0
MSE: 150.0
RMSE by hand: 12.2474487139
RMSE: 12.2474487139

计算Sales预测的RMSE

In [26]:

print np.sqrt(metrics.mean_squared_error(y_test, y_pred))
1.40465142303

4. 特征选择

在之前展示的数据中,我们看到Newspaper和销量之间的线性关系比较弱,现在我们移除这个特征,看看线性回归预测的结果的RMSE如何?

In [27]:

feature_cols = [‘TV‘, ‘Radio‘]

X = data[feature_cols]
y = data.Sales

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)

linreg.fit(X_train, y_train)

y_pred = linreg.predict(X_test)

print np.sqrt(metrics.mean_squared_error(y_test, y_pred))
1.38790346994

我们将Newspaper这个特征移除之后,得到RMSE变小了,说明Newspaper特征不适合作为预测销量的特征,于是,我们得到了新的模型。我们还可以通过不同的特征组合得到新的模型,看看最终的误差是如何的。

转载请注明:人人都是数据咖 » scikit-learn的线性回归模型

时间: 2024-08-29 02:02:09

scikit-learn的线性回归模型的相关文章

Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)

所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的垂直搜索引擎,专门为用户提供团购.优惠券的检索:同时存在一个通用的搜索引擎,比如百度,通用搜索引擎希望能够识别出一个Query是否具有O2O检索意图,如果有则调用O2O垂直搜索引擎,获取结果作为通用搜索引擎的结果补充. 我们的目的是学习出一个分类器(classifier),分类器可以理解为一个函数,

scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类

scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import numpy as np from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV from sk

线性模型(3)——多重线性回归模型

前面介绍了简单线性回归模型,接下来讲多重线性回归模型. 简单线性回归是针对一个因变量和一个自变量之间的线性回归关系,而多重线性回归是指一个因变量和多个自变量之间的线性回归关系.相对于简单线性回归,多重线性回归更具有实际意义,因为在实际生活中,多因素相互作用非常普遍,同时对因变量造成影响的往往不止一个自变量. 多重线性回归主要解决的问题是1.估计自变量与因变量之间的线性关系(估计回归方程)2.确定哪些自变量对因变量有影响(影响因素分析)3.确定哪个自变量对因变量最影响最大,哪个最小(自变量重要性分

一元线性回归模型与最小二乘法及其C++实现

原文:http://blog.csdn.net/qll125596718/article/details/8248249 监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归.回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析.如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析.对于二维空间线性是一条直线:对于三维空间线性是一

R语言解读多元线性回归模型

转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止一个,比如对于知识水平越高的人,收入水平也越高,这样的一个结论.这其中可能包括了因为更好的家庭条件,所以有了更好的教育:因为在一线城市发展,所以有了更好的工作机会:所处的行业赶上了大的经济上行周期等.要想解读这些规律,是复杂的.多维度的,多元回归分析方法更适合解读生活的规律. 由于本文为非统计的专业

线性回归模型

线性回归模型,即一个函数,这个函数里含有未知的参数,通过学习,可以估计出参数.然后利用这个模型去预测/分类新的数据. 线性回归形式简单,易于建模.许多更为强大的非线性模型可以在该模型基础上引入层级结构或高维映射而得. 线性回归模型基本形式 给定由d个属性表述的示例x=(X1,X2,X3...),期中每个Xi表示x在第i个属性上的取值,线性模型试图去学得一个通过属性的线性组合来进行预测的函数 f(x)= w1X1+w2X2+w3X3+...+wdXd+b 向量表示: f(x) = wTx+b 期中

【scikit-learn】scikit-learn的线性回归模型

 内容概要 怎样使用pandas读入数据 怎样使用seaborn进行数据的可视化 scikit-learn的线性回归模型和用法 线性回归模型的评估測度 特征选择的方法 作为有监督学习,分类问题是预測类别结果,而回归问题是预測一个连续的结果. 1. 使用pandas来读取数据 Pandas是一个用于数据探索.数据处理.数据分析的Python库 In [1]: import pandas as pd In [2]: # read csv file directly from a URL and

线性回归模型(Linear Regression)及Python实现

线性回归模型(Linear Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 对于一份数据,它有两个变量,分别是Petal.Width和Sepal.Length,画出它们的散点图.我们希望可以构建一个函数去预测Sepal.Length,当我们输入Petal.Width时,可以返回一个预测的Sepal.Length.从散点图可以发现,可以用一条直线去拟合,这时我们可以构建一元线性回归模型:hθ(x) = θ0 + θ1x1 (x1= Pe

【机器学习实战】多元线性回归模型

在许多实际问题中,影响因变量Y的自变量不止一个,通常设为p个,此时无法借助于图形的帮助来确定模型,这里则使用一种最为简单且普遍的模型--多元线性模型来进行回归计算. 1.数学模型 当影响Y值的因素不唯一时,我们可以使用多元线性回归模型: 当未知参数有两个时,我们可以画出此方程的图形表示(此时是一个平面,如图).如果未知数大于2时,则很难把此超平面给画出来. 如上图,为了求得等参数的值,我们由各个样本点(图中为红点)做一条平行于Y轴的直线,此直线交平面方程于一点,然后我们求得此线段的程度,并进行平

SPSS--回归-多元线性回归模型案例解析

多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程 为: 毫无疑问,多元线性回归方程应该为: 上图中的 x1,  x2, xp分别代表"自变量"Xp截止,代表有P个自变量,如果有"N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中: 代表随机误差, 其中随机误差分为:可解释的误差 和 不可解释的误差,随机误差必须满足以下四个条件,