大意:给定M条边,问有有多少边是不在环上(或环内)的,有多少边是有冲突的(什么是冲突?即在一个环内有多条边将环分割开,即这样的边+上环上边的总数)
思路:求桥的个数比较容易处理,直接(low[v]>dfn[u]即可)主要是怎么找冲突边,我们知道他们一定在一个联通分量内,所以我们将求出的 一组联通分量拿出来,进行遍历看是否所有的连的边在当前的栈中,在的话边数++,因为是无向图,所以最后要除二与联通分量的点相比较即可。
前向星:
#include<map> #include<queue> #include<cmath> #include<cstdio> #include<stack> #include<iostream> #include<cstring> #include<algorithm> #define LL int #define inf 0x3f3f3f3f #define eps 1e-8 #include<vector> #define ls l,mid,rt<<1 #define rs mid+1,r,rt<<1|1 using namespace std; const int Ma = 21000; struct node{ int to,next; }q[Ma*10];//注意看题目边的数目*2 int head[Ma*10],dfn[Ma],num[Ma],stk[Ma],du[Ma],low[Ma]; int cnt,top,tim,scc,sum,n,tmp[Ma],S,CNT,ans; bool vis[Ma],bj[Ma]; void Add(int a,int b){ q[cnt].to = b; q[cnt].next = head[a]; head[a] = cnt++; } void init(){ ans = CNT = scc = cnt = top = 0; tim = 1; memset(head,-1,sizeof(head)); for(int i = 0;i < n;++ i){ num[i] = low[i] = dfn[i] = 0; du[i] = vis[i] = 0; } } void Judge(){ int E = 0; for(int i = 0;i < S;++ i){ int u = tmp[i]; for(int j = head[u];~j;j=q[j].next){ int v = q[j].to; if( bj[v] ){ E++; } } } E /= 2; if(E > S) CNT += E; } void Tarjan(int u,int To){ low[u] = dfn[u] = tim++; vis[u] = true; stk[top++] = u; for(int i = head[u]; ~i ; i = q[i].next){ int v = q[i].to; if(i == (To^1)) continue; if(!vis[v]){ Tarjan(v,i); low[u] = min(low[u],low[v]); if(low[v]>dfn[u]) ans++; if(low[v] >= dfn[u]){ memset(bj,false,sizeof(bj)); S = 0; stk[top] = -1; tmp[S++] = u;bj[u] = true; while(stk[top] != v){ int now = stk[--top]; tmp[S++] = now; bj[now] = true; } Judge(); } } else low[u] = min(low[u],dfn[v]); } } int main(){ int m,i,j,k,a,b; while(~scanf("%d%d",&n,&m)){ if(!n&&!m) break; init(); for(i = 0;i < m;++ i){ scanf("%d%d",&a,&b); Add(a,b);Add(b,a); } for(i = 0;i < n;++ i) if(!dfn[i]) Tarjan(i,-1); printf("%d %d\n",ans,CNT); } return 0; }
时间: 2024-10-13 17:16:36