Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 178139 Accepted Submission(s): 41558
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence.
If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
再谈动态规划!
具体代码如下:
#include <iostream> #include <cstdio> #include <cstring> using namespace std; int dp[100001]; int a[100001]; int s[100001]; int main() { int T,k,count=0; cin>>T; while(T--) { cin>>k; count++; memset(a,0,sizeof(a)); memset(dp,0,sizeof(dp)); s[0]=s[1]=1; for(int i=1;i<=k;i++) { cin>>a[i]; } for(int i=1;i<=k;i++) { if(dp[i-1]+a[i]>=a[i]) { dp[i]=dp[i-1]+a[i]; s[i]=s[i-1]; } else { dp[i]=a[i]; s[i]=i; } } int start=1,end=1; int max=dp[1]; for(int i=2;i<=k;i++) { if(max<dp[i]) { max=dp[i]; start=s[i]; end=i; } } cout<<"Case "<<count<<":"<<endl; cout<<max<<" "<<start<<" "<<end<<endl; if(T!=0)cout<<endl; } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。