python基本图像操作

Python基本图像操作

使用python进行基本的图像操作与处理

前言:

与早期计算机视觉领域多数程序都是由 C/C++ 写就的情形不同。随着计算机硬件速度越来越快,研究者在考虑选择实现算法语言的时候会更多地考虑编写代码的效率和易用性,而不是像早年那样把算法的执行效率放在首位。这直接导致近年来越来越多的研究者选择 Python 来实现算法。

今天在计算机视觉领域,越来越多的研究者使用 Python 开展研究,所以有必要去学习一下十分易用的python在图像处理领域的使用,这篇博客将会介绍如何使用Python的几个著名的图像处理库完成最基本的图像操作与处理。

使用PIL进行基本图像操作

PIL简介:

PIL(Python Imaging Library Python,图像处理类库)提供了通用的图像处理功能,以及大量有用的基本图像操作,比如图像缩放、裁剪、旋转、颜色转换等。

PIL读取与存储图像:

利用 PIL 中的函数,我们可以从大多数图像格式的文件中读取数据,然后写入最常见的图像格式文件中。PIL 中最重要的模块为 Image 。

下面这个程序我使用PIL读取一张jpg图片将其灰度化之后存为一个png文件:

# -*- coding: utf-8 -*-

from PIL import Image

import os

#打开图像得到一个PIL图像对象
img = Image.open("./source/test.jpg")

#将其转为一张灰度图
img = img.convert(‘L‘)

#存储该张图片
try:
    img.save("test.png")
except IOError:
    print "cannot convert"

Test.jpg

Test.png

PIL生成缩略图:

# -*- coding: utf-8 -*-

from PIL import Image

import os

#打开图像得到一个PIL图像对象
img = Image.open("./source/test.jpg")

#创建最长边为128的缩略图
img.thumbnail((128,128))

#存储该张图片
try:
    img.save("test.png")
except IOError:
    print "cannot convert"

Test.png

PIL调整尺寸与旋转:

# -*- coding: utf-8 -*-

from PIL import Image

import os

#打开图像得到一个PIL图像对象
img = Image.open("./source/test.jpg")

#修改图片大小,参数为一元组
img = img.resize((100,200))

#使图片逆时针选择45度
img = img.rotate(45)

#存储该张图片
try:
    img.save("test.png")
except IOError:
    print "cannot convert"

Test.png

PIL复制粘贴图像区域:

# -*- coding: utf-8 -*-

# -*- coding: utf-8 -*-

from PIL import Image

import os

#打开图像得到一个PIL图像对象
img = Image.open("./source/test.jpg")

#从img中裁剪指定区域
region = img.crop((300,300,500,500))

#使裁剪部分逆时针选择145度
region = region.rotate(145)

#将该区域粘贴至指定区域
img.paste(region,(100,100,300,300));

#存储该张图片
try:
    img.save("test.png")
except IOError:
    print "cannot convert"

Test.png

元组的使用中,坐标原点为左上角,区域划分如下图所示

使用Matplotlib进行基本图像操作

Matplotlib简介:

我们处理数学运算、绘制图表,或者在图像上绘制点、直线和曲线时, Matplotlib是个很好的类库,具有比 PIL 更强大的绘图功能。Matplotlib 可以绘制出较好的条形图、饼状图、散点图等,但是对于大多数计算机视觉应用来说,仅仅需要用到几个绘图命令。比如,我们想用点和线来表示一些事物,比如兴趣点、对应点以及检测出的物体。

使用Matplotlib绘制图像、点、线

# -*- coding: utf-8 -*-

from PIL import Image

from pylab import *

#打开图像得到一个PIL图像对象
img = Image.open("./source/test.jpg")

# 读取图像到数组中
im = array(img)

# 绘制图像
imshow(im)

# 一些点
x = [100,100,400,400]
y = [200,500,200,500]

# 使用红色星状标记绘制点
plot(x,y,‘r*‘)

# 绘制连接前两个点的线
plot(x[:2],y[:2])

# 添加标题,显示绘制的图像
title(‘Plotting: "Test.jpg"‘)

show()

show() 命令首先打开图形用户界面(GUI),然后新建一个图像窗口。该图形用户界面会循环阻断脚本,然后暂停,直到最后一个图像窗口关闭。在每个脚本里,你只能调用一次 show() 命令,而且通常是在脚本的结尾调用。

也可以使用axis(‘off’)命令使坐标轴不显示。

运行结果

在绘图时,有很多选项可以控制图像的颜色和样式。

如:

plot(x,y)           #默认为蓝色实线
plot(x,y,‘r*‘)      #红色星状标记
plot(x,y,‘go-‘)     #带有圆圈标记的绿线
plot(x,y,‘ks:‘)     #带有正方形标记的黑色虚线
标记 颜色
‘b’ 蓝色
‘g’ 绿色
‘r’ 红色
‘c’ 青色
‘m’ 品红
‘y’ 黄色
‘k’ 黑色
‘w’ 白色
标记 线型
‘-‘ 实线
‘–’ 虚线
‘:’ 点线
标记 形状
‘.’
‘o’ 圆圈
’s’ 正方形
‘*’ 星形
‘+’ 加号
‘x’ 叉号

使用Matplotlib绘制图像轮廓

绘制图像的轮廓(或者其他二维函数的等轮廓线)在工作中非常有用。因为绘制轮廓需要对每个坐标 [x, y] 的像素值施加同一个阈值,所以首先需要将图像灰度化,之后使用contour获得轮廓图像

# -*- coding: utf-8 -*-

from PIL import Image

from pylab import *

# 读取图像到数组中,并灰度化
im = array(Image.open(‘./source/test.jpg‘).convert(‘L‘))

#显示时抛弃颜色信息
gray()

# 显示轮廓图像
contour(im, origin=‘image‘)

# 在原点的左上角显示
axis(‘equal‘)

#关闭坐标轴
axis(‘off‘)

show()

运行结果

使用Matplotlib绘制直方图

图像的直方图用来表征该图像像素值的分布情况。用一定数目的小区间(bin)来指定表征像素值的范围,每个小区间会得到落入该小区间表示范围的像素数目。(灰度)图像的直方图可以使用 hist() 函数绘制:

hist() 函数的第二个参数指定小区间的数目。需要注意的是,因为 hist() 只接受一维数组作为输入,所以我们在绘制图像直方图之前,必须先对图像进行压平处理。flatten() 方法将任意数组按照行优先准则转换成一维数组。

# -*- coding: utf-8 -*-

from PIL import Image

from pylab import *

# 读取图像到数组中,并灰度化
im = array(Image.open(‘./source/test.jpg‘).convert(‘L‘))

# 直方图图像
hist(im.flatten(),128)

# 显示
show()

运行结果

使用Matplotlib进行交互式标注

PyLab 库中的 ginput() 函数可以实现交互式标注,用来标记一些点或者是一些训练数据。

# -*- coding: utf-8 -*-

from PIL import Image

from pylab import *

# 读取图像到数组中
im = array(Image.open(‘./source/test.jpg‘))

# 显示图像
imshow(im)

print ‘Please click 3 points‘

#获取点击并将点击坐标保存在[x,y]列表中
x = ginput(3)

#输出保存的数据
print ‘you clicked:‘,x

show()

上面的脚本首先绘制一幅图像,然后等待用户在绘图窗口的图像区域点击三次。程

序将这些点击的坐标 [x, y] 自动保存在 x 列表里。

运行结果

you clicked: [(295.22704081632651, 210.72448979591837), (405.43112244897952, 66.846938775510239), (439.1045918367347, 180.11224489795921)]

结语:

本篇博客介绍了一些python基本的图像操作,除了上述的PIL和Matplotlib,还经常会使用numpy直接操作图像数组来达到操作图像的目的,使用scipy完成更多更复杂的计算,我会把我的学习过程记录下来,希望对大家有所帮助~

时间: 2024-12-18 01:32:00

python基本图像操作的相关文章

学习笔记TF015:加载图像、图像格式、图像操作、颜色

TensorFlow支持JPG.PNG图像格式,RGB.RGBA颜色空间.图像用与图像尺寸相同(height*width*chnanel)张量表示.通道表示为包含每个通道颜色数量标量秩1张量.图像所有像素存在磁盘文件,需要被加载到内存. 图像加载与二进制文件相同.图像需要解码.输入生成器(tf.train.string_input_producer)找到所需文件,加载到队列.tf.WholeFileReader加载完整图像文件到内存,WholeFileReader.read读取图像,tf.ima

2014 年10个最佳的PHP图像操作库

2014 年10个最佳的PHP图像操作库 Thomas Boutell 以及众多的开发者创造了以GD图形库闻名的一个图形软件库,用于动态的图形计算. GD提供了对于诸如C, Perl, Python, PHP, OCaml等等诸多编程语言的支持. 除了生成HTML输出之外, 你还可以使用php以众多的像 PNG, JPEG, GIF, WBMP,以及 XPM这样的图形文件格式来创建和计算图形文件. 并且,php的使用还能让你可以直接向一个浏览器输出图像流. 为了做到这一点,你需要借助于GD库图像

2014 年10个最佳的PHP图像操作库--留着有用

Thomas Boutell 以及众多的开发者创造了以GD图形库闻名的一个图形软件库,用于动态的图形计算. GD提供了对于诸如C, Perl, Python, PHP, OCaml等等诸多编程语言的支持. 除了生成HTML输出之外, 你还可以使用php以众多的像 PNG, JPEG, GIF, WBMP,以及 XPM这样的图形文件格式来创建和计算图形文件. 并且,php的使用还能让你可以直接向一个浏览器输出图像流. 为了做到这一点,你需要借助于GD库图像功能的使用来编译php. 在这篇文章中,你

python实现图像膨胀和腐蚀算法

如果您觉得本文不错!记得点赞哦! 一. 图像形态学简介: 经验之谈:形态学操作一般作用于二值图像,来连接相邻的元素(膨胀)或分离成独立的元素(侵蚀).腐蚀和膨胀是针对图片中的白色(即前景)部分! 二. 图像形态学操作 膨胀和腐蚀的算法: 膨胀算法: 对于待操作的像素 f(x,y),不论 f(x,y-1) .f(x,y+1) .f(x-1,y) .f(x+1,y) 哪一个为255,则 f(x,y)=255. 膨胀操作 ↑ 换句话说:将待操作的图像像素与以下  4-近邻矩阵 相乘,结果大于255的话

OpenCV(C++接口)学习笔记2-像素级的图像操作

1.通过成员函数at(int y, int x)访问 这种方法需要知道像素保存的格式. (1) 这是为模板类型的函数,因为一个函数的返回类型只有在运行时才会知道. (2)这个函数返回的是一个向量即Vector,故有下标的操作. image.at<uchar>(j,i)= 255; 在单通道图像中,采用以上语句可以获取图像(i,j)处的灰度值(注:先行后列,一般用j表示行(rows),i表示列(cols)).如果是灰度图像的话,只需要更改一个数据就可以了.如果是rgb图像的话,就要用"

python MySQLdb 常用操作

我采用的是MySQLdb操作的MYSQL数据库.先来一个简单的例子吧: import MySQLdb try:     conn=MySQLdb.connect(host='localhost',user='root',passwd='root',db='test',port=3306)     cur=conn.cursor()     cur.execute('select * from user')     cur.close()     conn.close() except MySQL

python之文件操作-复制、剪切、删除等

下面是把sourceDir文件夹下的以.JPG结尾的文件全部复制到targetDir文件夹下: <span style="font-size:18px;">>>>import os >>> import os.path >>> import shutil >>> def copyFiles(sourceDir,targetDir): for files in os.listdir(sourceDir):

python文件相关操作

Python文件相关操作 打开文件 打开文件,采用open方法,会将文件的句柄返回,如下: f = open('test_file.txt','r',encoding='utf-8') 在上面的代码中,open()方法进行打开文件等相关操作,open()方法其中第一个参数是要打开的文件的文件路径,第二个参数是对要打开文件要执行的权限,第三个参数是文件采用字符编码. 而open()方法返回的内容叫做文件句柄.我们可以打印返回的文件句柄来看下: f = open('test_file.txt','r

Python 文件常见操作

[python] view plain copy print? # -*-coding:utf8 -*- ''''' Python常见文件操作示例 os.path 模块中的路径名访问函数 分隔 basename() 去掉目录路径, 返回文件名 dirname() 去掉文件名, 返回目录路径 join() 将分离的各部分组合成一个路径名 split() 返回 (dirname(), basename()) 元组 splitdrive() 返回 (drivename, pathname) 元组 sp