Codeforces 460C 二分结果+线段树维护

发现最近碰到好多次二分结果的题目,上次多校也是,被我很机智的快速过了,这个思想确实非常不错。在正面求比较难处理的时候,二分结果再判断是否有效往往柳暗花明。

这个题目给定n个数字的序列,可以操作m次,每次要操作w个连续的数字,每次的操作将使得该段连续数字的数都+1,最后求整个序列最小值的最大值

求最小值最大,明显的二分结果的题目,我一开始还是在ACdream那个群里看到这个题,说是二分+线段树的题目,我就来做了一下。。首先二分部分很容易,下界就是初始序列的最小值,上界就是 下界+m,至于怎么判断这个就要想一下,我一开始还觉得不用线段树,因为我每次枚举完结果,对整个序列扫一遍,对不符合要求的数+到正好符号要求不就行了。

不过这个里面因为是要+连续一段,你普通的找到一个不符合条件的数,然后对他以及他之后的w-1个数都进行一次加法,很耗时啊,所以这个就是为什么要用线段树,其实我觉得用扫描线估计也可以,对某个起始点设置+1,起始点+w-1设置为-1,然后用个东西维护,++--的,估计也可以。反正最后用的线段树,普通的区间增,单点查询。

一开始还担心复杂度,不过还行的感觉,每次二分都要重新建树,这里就是 logN*N*logN,对二分结果进行判断,需要单点查询以及区间更新,这里是2*logN*logN,所以总的就是

logN*logN*(N+2)的复杂度,N最大为10的五次方,logN不超过20

#include <iostream>
#include <cstdio>
#include <cstring>
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define LL __int64
using namespace std;
const int  N = 100000+10;
int n,m,w;
LL d[N<<2],flag[N<<2],A[N];
LL mini;
void up(int rt)
{
    d[rt]=min(d[rt<<1],d[rt<<1|1]);
}
void build(int rt,int l,int r)
{
    flag[rt]=0;
    if (l>=r){
        d[rt]=A[l];
        //cout<<l<<" "<<A[l]<<endl;
        return;
    }
    int mid=(l+r)>>1;
    build(lson);
    build(rson);
    up(rt);
}
void pushdown(int rt,int l,int r)
{
    if (flag[rt]==0) return;
    d[rt<<1]+=flag[rt];
    d[rt<<1|1]+=flag[rt];
    flag[rt<<1]+=flag[rt];
    flag[rt<<1|1]+=flag[rt];
    flag[rt]=0;
}
LL query(int loc,int rt,int l,int r)
{
    if (l==r) return d[rt];
    int mid=(l+r)>>1;
    pushdown(rt,l,r);
    if (loc<=mid) return query(loc,lson);
    else return query(loc,rson);
}
void update(LL val,int L,int R,int rt,int l,int r)
{
    if (L<=l && r<=R){
        d[rt]+=val;
        flag[rt]+=val;
        return;
    }
    pushdown(rt,l,r);
    int mid=(l+r)>>1;
    if (L<=mid) update(val,L,R,lson);
    if (R>mid) update(val,L,R,rson);
    up(rt);
}
bool judge(LL x)
{
    LL tmp=m;
    for (int i=1;i<=n;i++){
        LL now=query(i,1,1,n);
       // cout<<"Test "<<i<<endl;
       // cout<<now<<endl;
        if (now<x){
           if (x-now>tmp) return 0;
           else {
             update(x-now,i,min(i+w-1,n),1,1,n);
             tmp-=x-now;
           }
        }
    }
    return 1;
}
int main()
{
    while (scanf("%d%d%d",&n,&m,&w)!=EOF)
    {
        mini=-1;
        for (int i=1;i<=n;i++){
            scanf("%I64d",&A[i]);
            //cout<<i<<" "<<A[i]<<endl;
            if (mini==-1) mini=A[i];
            else mini=min(A[i],mini);
        }
        LL L=mini,R=mini+(LL)m,mid;
        while (L<R){
            build(1,1,n);
            mid=R-(R-L)/2;
           // cout<<L<<" "<<mid<<" "<<R<<endl;
            if (judge(mid)) {L=mid;}
            else {R=mid-1;}
        }
        printf("%I64d\n",L);
    }
    return 0;

}

  

时间: 2024-10-16 13:25:22

Codeforces 460C 二分结果+线段树维护的相关文章

Codeforces 777D Hanoi Factory(线段树维护DP)

题目链接 Hanoi Factory 很容易想到这是一个DAG模型,那么状态转移方程就出来了. 但是排序的时候有个小细节:b相同时看a的值. 因为按照惯例,堆塔的时候肯定是内半径大的在下面. 因为N有1e5,那么DP的时候用线段树优化一下,就可以了. 1 #include <bits/stdc++.h> 2 3 using namespace std; 4 5 #define rep(i, a, b) for(int i(a); i <= (b); ++i) 6 7 typedef lo

Codeforces GYM 100114 D. Selection 线段树维护DP

D. Selection Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Description When selecting files in an application dialog, Vasya noted that he can get the same selection in different ways. A simple mouse click selects a sing

BZOJ 2402 陶陶的难题II 二分答案+斜率优化+树链剖分+线段树维护凸包

题目大意:给定一棵树,每个点有两个坐标(x1,y1)和(x2,y2),多次询问某条链上选择两个点i和j(可以相同),求(y1i+y2j)/(x1i+x2j)的最大值 我竟没看出来这是01分数规划...真是老了... 二分答案ans,问题转化成验证(y1i+y2j)/(x1i+x2j)是否>=ans 将式子变形可得(y1i-ans*x1i)+(y2j-ans*x2j)>=0 加号两边独立,分别计算即可 问题转化为求链上y-ans*x最大的点 令P=y-ans*x 则y=ans*x+P 我们发现这

Codeforces 487B. Strip DP+线段树+二分

dp[ i ]表示到第i个位置最少要分多少下, dp[ i ] = min ( dp [ i ] , dp [ j ] + 1 ) j 在合适的范围内 (  满足长度和最值差 ) 对整个数组建立线段树维护最大值和最小值这样就可在nlogn的时间里求出某一段的最值差,这个范围是满足单调性的,所以对于每个i可以二分出j的最小值 . 对每个dp[i]建立线段树,可以在nlogn时间内求出最小的j. 所以总时间复杂度n^2logn B. Strip time limit per test 1 secon

CodeForces 343D 线段树维护dfs序

给定一棵树,初始时树为空 操作1,往某个结点注水,那么该结点的子树都注满了水 操作2,将某个结点的水放空,那么该结点的父亲的水也就放空了 操作3,询问某个点是否有水 我们将树进行dfs, 生成in[u], 访问结点u的时间戳,out[u],离开结点u的时间戳 每个结点的in值对应在线段树中的区间的一点 那么对于操作1, 只要将区间[in[u],out[u]] 的值都改为1, 但是如果区间[in[u],out[u]] 原先存在为0的点,那么父区间肯定是空的,这个操作不能 改变父区间的状态,所以需要

codeforces CF718C Sasha and Array 线段树维护矩阵

$ \Rightarrow $ 戳我进CF原题 C. Underground Lab time limit per test: 1 second memory limit per test: 256 megabytes input: standard input output: standard output The evil Bumbershoot corporation produces clones for gruesome experiments in a vast undergroun

从《楼房重建》出发浅谈一类使用线段树维护前缀最大值的算法

首先需要申明的是,真的是浅谈,因为我对这个算法的认识还是非常低的. 既然是从<楼房重建>出发,那么当然是先看看这道题: [清华集训2013]楼房重建 bzoj 链接 题意简述: 有 \(n\) 栋楼,第 \(i\) 栋的高度为 \(H_i\),也就是说第 \(i\) 栋楼可以抽象成一条两端点为 \((i, 0)\) 和 \((i, H_i)\) 的线段. 初始时 \(H_i\) 均为 \(0\),要支持动态修改单点的 \(H_i\). 每次询问从 \(O(0, 0)\) 点可以看到多少栋楼房.

Codeforces 482B Interesting Array(线段树)

题目链接:Codeforces 482B Interesting Array 题目大意:给定一个长度为N的数组,现在有M个限制,每个限制有l,r,q,表示从a[l]~a[r]取且后的数一定为q,问是 否有满足的数列. 解题思路:线段树维护,每条限制等于是对l~r之间的数或上q(取且的性质,相应二进制位一定为1),那么处理完所有的 限制,在进行查询,查询对应每个l~r之间的数取且是否还等于q.所以用线段树维护取且和,修改为或操作. #include <cstdio> #include <c

Codeforces 755D(思维+线段树)

http://codeforces.com/problemset/problem/755/D 从X到X+k点,其实只要求从X到X+k之间的点有多少条线超过X--X+K这条线就行,一开始直接暴力,就时间超时了,而用线段树维护就快多了. 1 #include <bits/stdc++.h> 2 using namespace std; 3 typedef long long LL; 4 #define N 1000010 5 #define INF 0x3f3f3f3f 6 #define lso