Marriage Match IV
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2391 Accepted Submission(s): 722
Problem Description
Do not sincere non-interference。
Like that show, now starvae also take part in a show, but it take place between city A and B. Starvae is in city A and girls are in city B. Every time starvae can get to city B and make a data with a girl he likes. But there are two problems with it, one is
starvae must get to B within least time, it‘s said that he must take a shortest path. Other is no road can be taken more than once. While the city starvae passed away can been taken more than once.
So, under a good RP, starvae may have many chances to get to city B. But he don‘t know how many chances at most he can make a data with the girl he likes . Could you help starvae?
Input
The first line is an integer T indicating the case number.(1<=T<=65)
For each case,there are two integer n and m in the first line ( 2<=n<=1000, 0<=m<=100000 ) ,n is the number of the city and m is the number of the roads.
Then follows m line ,each line have three integers a,b,c,(1<=a,b<=n,0<c<=1000)it means there is a road from a to b and it‘s distance is c, while there may have no road from b to a. There may have a road from a to a,but you can ignore it. If there are two roads
from a to b, they are different.
At last is a line with two integer A and B(1<=A,B<=N,A!=B), means the number of city A and city B.
There may be some blank line between each case.
Output
Output a line with a integer, means the chances starvae can get at most.
Sample Input
3 7 8 1 2 1 1 3 1 2 4 1 3 4 1 4 5 1 4 6 1 5 7 1 6 7 1 1 7 6 7 1 2 1 2 3 1 1 3 3 3 4 1 3 5 1 4 6 1 5 6 1 1 6 2 2 1 2 1 1 2 2 1 2
Sample Output
2 1 1
Author
[email protected]
Source
HDOJ Monthly Contest – 2010.06.05
题意:有n个city,m条有向路,问一个人从A城市到B城市按最短的路走共有多少条路可走,每条边只能走一次,即每条边只属于一条路。
解题:先用SPFA把所有的点到B的最短距离算出D[],用于启发式找一条增广流路,从u走到的每一个到v ,如果是正向流而非回流,则必须满足D[v]+edg[u->v].d+pathd(A-->u)==mindis(A-->B).
#include<stdio.h> #include<string.h> #include<queue> #include<vector> #include<algorithm> using namespace std; #define captype int const int MAXN = 1010; //点的总数 const int MAXM = 400010; //边的总数 const int INF = 1<<30; struct EDG{ int to,next; captype cap,flow; int d; } edg[MAXM]; int eid,head[MAXN]; int gap[MAXN]; //每种距离(或可认为是高度)点的个数 int dis[MAXN]; //每个点到终点eNode 的最短距离 int cur[MAXN]; //cur[u] 表示从u点出发可流经 cur[u] 号边 int pre[MAXN]; int D[MAXN], vist[MAXN], mindis; void init(){ eid=0; memset(head,-1,sizeof(head)); } //有向边 三个参数,无向边4个参数 void addEdg(int u,int v,int d,captype rc=0){ edg[eid].to=v; edg[eid].next=head[u]; edg[eid].d=d; edg[eid].cap=1; edg[eid].flow=0; head[u]=eid++; edg[eid].to=u; edg[eid].next=head[v]; edg[eid].d=INF; edg[eid].cap=rc; edg[eid].flow=0; head[v]=eid++; } captype maxFlow_sap(int sNode,int eNode, int n){//n是包括源点和汇点的总点个数,这个一定要注意 memset(gap,0,sizeof(gap)); memset(dis,0,sizeof(dis)); memcpy(cur,head,sizeof(head)); memset(vist,-1,sizeof(vist)); pre[sNode] = -1; gap[0]=n; captype ans=0; //最大流 vist[sNode]=0; int u=sNode ; while(dis[sNode]<n){ //判断从sNode点有没有流向下一个相邻的点 if(u==eNode){ //找到一条可增流的路 captype Min=INF ; int inser; for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to]) //从这条可增流的路找到最多可增的流量Min if(Min>edg[i].cap-edg[i].flow){ Min=edg[i].cap-edg[i].flow; inser=i; } for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to]){ edg[i].flow+=Min; edg[i^1].flow-=Min; //可回流的边的流量 } ans+=Min; u=edg[inser^1].to; continue; } bool flag = false; //判断能否从u点出发可往相邻点流 int v; for(int i=cur[u]; i!=-1; i=edg[i].next){ v=edg[i].to; if(edg[i].cap>0&&vist[u]+edg[i].d+D[v]!=mindis)//如果是正流,则必须保证是最短的一条路,如果是逆流,表明v点己是在最短路上 continue; vist[v]=mindis-D[v]; if( edg[i].cap-edg[i].flow>0 && dis[u]==dis[v]+1){ flag=true; cur[u]=pre[v]=i; break; } } if(flag){ u=v; continue; } //如果上面没有找到一个可流的相邻点,则改变出发点u的距离(也可认为是高度)为相邻可流点的最小距离+1 int Mind= n; for(int i=head[u]; i!=-1; i=edg[i].next){ v=edg[i].to; if(edg[i].cap>0&&vist[u]+edg[i].d+D[v]!=mindis) continue; vist[v]=mindis-D[v]; if( edg[i].cap-edg[i].flow>0 && Mind>dis[v]){ Mind=dis[v]; cur[u]=i; } } gap[dis[u]]--; if(gap[dis[u]]==0) return ans; //当dis[u]这种距离的点没有了,也就不可能从源点出发找到一条增广流路径 //因为汇点到当前点的距离只有一种,那么从源点到汇点必然经过当前点,然而当前点又没能找到可流向的点,那么必然断流 dis[u]=Mind+1;//如果找到一个可流的相邻点,则距离为相邻点距离+1,如果找不到,则为n+1 gap[dis[u]]++; if(u!=sNode) u=edg[pre[u]^1].to; //退一条边 } return ans; } void spfa(int s,int t,int n){ queue<int>q; int inq[MAXN]={0}; for(int i=1; i<=n; i++) D[i]=INF; D[t]=0; q.push(t); while(!q.empty()){ int u=q.front(); q.pop(); inq[u]=0; for(int i=head[u]; i!=-1; i=edg[i].next) if(edg[i].d==INF&&D[edg[i].to]>D[u]+edg[i^1].d){ D[edg[i].to]=D[u]+edg[i^1].d; if(inq[edg[i].to]==0) inq[edg[i].to]=1,q.push(edg[i].to); } } } int main(){ int _case; int n,m,u,v,d,S,T; scanf("%d",&_case); while(_case--){ scanf("%d%d",&n,&m); init(); while(m--){ scanf("%d%d%d",&u,&v,&d); addEdg(u,v,d); } scanf("%d%d",&S,&T); spfa(S,T,n); mindis=D[S];//printf("#%d ",mindis); int ans=maxFlow_sap(S,T,n); printf("%d\n",ans); } }