faster rcnn学习(三)

今天学习用来判断faster rcnn中对于评估多个类别检测的效果,部分内容参考http://blog.sina.com.cn/s/blog_9db078090102whzw.html。

mAP(mean average precision)多类平均精度,首先计算出每个类的AP,然后取所有类的AP的平均。解释这个,先了解混淆矩阵的4个概念。



TP:预测为真的正样例

TN:预测为真的负样例

FP:预测为假的正样例

FN:预测为假的负样例



记住这个很简单,以TP为例,先记住P代表预测的结果是positive sample,正样例,T代表预测的结果与GT,真实的结果一致,说明真实的结果也是正样例。

先给出推理流程:

(1)TP,TN,FP,FN-----PR(P:Precision,R:Recall)-----AP-----mAP

(2)TP,TN,FP,FN-----TPR,FPR-----ROC-----AUC

先记录(1)的推理过程。

Precision精度表示预测为正的样本中真正为正的样本所占的比例。

Precision=TP/(TP+FP)

Recall召回率表示实际为真的所有样例预测出为真的样例所占的比例。

Recall=TP/(TP+FN)



接下里的AP和mAP的计算方式我是从这个博客看到的,是我见过讲的最好的博客。附上地址http://blog.sina.com.cn/s/blog_9db078090102whzw.html。

原文地址:https://www.cnblogs.com/w33-blog/p/9959998.html

时间: 2025-02-01 20:03:51

faster rcnn学习(三)的相关文章

Faster RCNN学习记录

<Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks>Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun                                           ——学习资料记录(Simon John) 文章拟解决问题(Towards Real-Time) SPP net和Fast R-CNN提取proposal(

faster r-cnn学习(一)

http://closure11.com/rcnn-fast-rcnn-faster-rcnn%E7%9A%84%E4%B8%80%E4%BA%9B%E4%BA%8B/ 首先看fast r-cnn这篇论文,中间加入了有些博友的想法. 问题 目标检测主要面临两个问题:过多的候选位置(proposals):必须由这些粗略的候选位置中选出准确的位置. 这篇论文将学习目标proposals分类和精确定位结合起来. 1. R-CNN和SPPnet存在的问题 (1)R-CNN的问题 训练需要多阶段:先用Co

Faster R-CNN论文详解

原文链接:http://lib.csdn.net/article/deeplearning/46182 paper链接:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks &创新点 设计Region Proposal Networks[RPN],利用CNN卷积操作后的特征图生成region proposals,代替了Selective Search.EdgeBoxes等方法,速度上提升明显:

r-cnn学习系列(三):从r-cnn到faster r-cnn

把r-cnn系列总结下,让整个流程更清晰. 整个系列是从r-cnn至spp-net到fast r-cnn再到faster r-cnn.  RCNN 输入图像,使用selective search来构造proposals(大小不一,需归一化),输入到CNN网络来提取特征, 并根据特征来判断是什么物体(分类器,将背景也当做一类物体),最后是对物体的区域(画的框)进行微调(回归器). 由下面的图可看出,RCNN分为四部分,ss(proposals),CNN,分类器,回归器,这四部分是相对独立的.改进的

RCNN学习笔记(5):faster rcnn

reference link: http://blog.csdn.net/shenxiaolu1984/article/details/51152614 http://blog.csdn.net/xyy19920105/article/details/50817725 思想 从RCNN到fast RCNN,再到本文的faster RCNN,目标检测的四个基本步骤(候选区域生成,特征提取,分类,位置精修)终于被统一到一个深度网络框架之内.所有计算没有重复,完全在GPU中完成,大大提高了运行速度.

目标检测梳理:基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN(转)

基于深度学习的目标检测技术演进:R-CNN.Fast R-CNN.Faster R-CNN(转) 原文链接:https://www.cnblogs.com/skyfsm/p/6806246.html object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方

深度学习之目标检测常用算法原理+实践精讲 YOLO / Faster RCNN / SSD / 文本检测 / 多任务网络

深度学习之目标检测常用算法原理+实践精讲 YOLO / Faster RCNN / SSD / 文本检测 / 多任务网络 资源获取链接:点击这里 第1章 课程介绍 本章节主要介绍课程的主要内容.核心知识点.课程涉及到的应用案例.深度学习算法设计通用流程.适应人群.学习本门课程的前置条件.学习后达到的效果等,帮助大家从整体上了解本门课程的整体脉络. 1-1 课程导学 第2章 目标检测算法基础介绍 本章节主要介绍目标检测算法的基本概念.传统的目标检测算法.目前深度学习目标检测主流方法(one-sta

r-cnn学习(二)

faster r-cnn 1.问题 在fast r-cnn中,proposals已经成为速度提高的瓶颈.在本文中,使用深度网络来计算proposals, 使得与检测网络的计算量相比,proposals的计算量可忽略不计.为此,本文提出了RPN网络(Region Proposal Network), 与目标检测网络共享卷积层,大大减少了计算proposals的时间. 2.方案 在fast r-cnn中,region-based detectors可以使用卷积特征图,那么这些特征图也可以用来生成re

(转)Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(更快的RCNN:通过区域提议网络实现实时)

原文出处 感谢作者~ Faster R-CNN: Towards Real-Time Object Detection with Region ProposalNetworks Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun 摘要 目前最先进的目标检测网络需要先用区域建议算法推测目标位置,像SPPnet[7]和Fast R-CNN[5]这些网络已经减少了检测网络的运行时间,这时计算区域建议就成了瓶颈问题.本文中,我们介绍一种区域建议网络(Reg