机器学习-交叉熵原理

参考了这个博客:https://blog.csdn.net/tsyccnh/article/details/79163834

主要用于多分类、单分类任务中,计算loss,交叉熵定义如下:

其中:

  • p是实际概率,在机器学习中通常为label值,且取值为0或则1
  • q是预测概率,在机器学习中通常为预测结果,通常取值(0,1)

原文地址:https://www.cnblogs.com/xbit/p/9955519.html

时间: 2024-10-12 20:38:04

机器学习-交叉熵原理的相关文章

【机器学习基础】熵、KL散度、交叉熵

熵(entropy).KL 散度(Kullback-Leibler (KL) divergence)和交叉熵(cross-entropy)在机器学习的很多地方会用到.比如在决策树模型使用信息增益来选择一个最佳的划分,使得熵下降最大:深度学习模型最后一层使用 softmax 激活函数后,我们也常使用交叉熵来计算两个分布的"距离".KL散度和交叉熵很像,都可以衡量两个分布之间的差异,相互之间可以转化. 1. 如何量化信息? 信息论是应用数学的一个分支,主要研究的是对一个信号包含信息的多少进

机器学习、深度学习中的信息熵、相对熵(KL散度)、交叉熵、条件熵

信息熵 信息量和信息熵的概念最早是出现在通信理论中的,其概念最早是由信息论鼻祖香农在其经典著作<A Mathematical Theory of Communication>中提出的.如今,这些概念不仅仅是通信领域中的基础概念,也被广泛的应用到了其他的领域中,比如机器学习. 信息量用来度量一个信息的多少.和人们主观认识的信息的多少有些不同,这里信息的多少用信息的在一个语境中出现的概率来定义,并且和获取者对它的了解程度相关,概率越大认为它的信息量越小,概率越小认为它的信息量越大.用以下式子定义:

最大似然估计 (Maximum Likelihood Estimation), 交叉熵 (Cross Entropy) 与深度神经网络

最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写一写很多童鞋们w未必完全理解的最大似然估计的部分. 单纯从原理上来说,最大似然估计并不是一个非常难以理解的东西.最大似然估计不过就是评估模型好坏的方式,它是很多种不同评估方式中的一种.未来准备写一写最大似然估计与它的好朋友们,比如说贝叶斯估计 (Beyasian Estimation), 最大后验估计(Max

信息量,熵,交叉熵,相对熵与代价函数

本文将介绍信息量,熵,交叉熵,相对熵的定义,以及它们与机器学习算法中代价函数的定义的联系.转载请保留原文链接:http://www.cnblogs.com/llhthinker/p/7287029.html 1. 信息量 信息的量化计算: 解释如下: 信息量的大小应该可以衡量事件发生的“惊讶程度”或不确定性: 如果有?告诉我们?个相当不可能的事件发?了,我们收到的信息要多于我们被告知某个很可能发?的事件发?时收到的信息.如果我们知道某件事情?定会发?,那么我们就不会接收到信息. 也就是说,信息量

交叉熵

http://www.cnblogs.com/ljy2013/p/6432269.html 作者:Noriko Oshima链接:https://www.zhihu.com/question/41252833/answer/108777563来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 熵的本质是香农信息量()的期望. 现有关于样本集的2个概率分布p和q,其中p为真实分布,q非真实分布.按照真实分布p来衡量识别一个样本的所需要的编码长度的期望(即平均编码长度)为

如何通俗的解释交叉熵与相对熵

[From] https://www.zhihu.com/question/41252833/answer/108777563 熵的本质是香农信息量()的期望. 现有关于样本集的2个概率分布p和q,其中p为真实分布,q非真实分布.按照真实分布p来衡量识别一个样本的所需要的编码长度的期望(即平均编码长度)为:H(p)=.如果使用错误分布q来表示来自真实分布p的平均编码长度,则应该是:H(p,q)=.因为用q来编码的样本来自分布p,所以期望H(p,q)中概率是p(i).H(p,q)我们称之为"交叉熵

深度学习中交叉熵和KL散度和最大似然估计之间的关系

机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论中熵的定义.信息论认为: 确定的事件没有信息,随机事件包含最多的信息. 事件信息的定义为:\(I(x)=-log(P(x))\):而熵就是描述信息量:\(H(x)=E_{x\sim P}[I(x)]\),也就是\(H(x)=E_{x\sim P}[-log(P(x))]=-\Sigma_xP(x)l

[转] 理解交叉熵在损失函数中的意义

转自:https://blog.csdn.net/tsyccnh/article/details/79163834 关于交叉熵在loss函数中使用的理解交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距.以前做一些分类问题的时候,没有过多的注意,直接调用现成的库,用起来也比较方便.最近开始研究起对抗生成网络(GANs),用到了交叉熵,发现自己对交叉熵的理解有些模糊,不够深入.遂花了几天的时间从头梳理了一下相关知识点,才算透彻的理解了,特地记录下来,以

深度学习-交叉熵损失

SoftMax回归 对于MNIST中的每个图像都是零到九之间的手写数字.所以给定的图像只能有十个可能的东西.我们希望能够看到一个图像,并给出它是每个数字的概率. 例如,我们的模型可能会看到一个九分之一的图片,80%的人肯定它是一个九,但是给它一个5%的几率是八分之一(因为顶级循环),并有一点概率所有其他,因为它不是100%确定. 这是一个经典的情况,其中softmax回归是一种自然简单的模型.如果要将概率分配给几个不同的东西之一的对象,softmax是要做的事情,因为softmax给出了一个[0