掌握Spark机器学习库-07-回归分析概述

1)回归与分类算法的区别

回归的预测结果是连续的,分类的预测结果是离散的。

2)spark实现的回归算法有:

3)通过相关系数衡量线性关系的程度

原文地址:https://www.cnblogs.com/moonlightml/p/9787938.html

时间: 2025-01-18 00:44:35

掌握Spark机器学习库-07-回归分析概述的相关文章

掌握Spark机器学习库-07.6-线性回归实现房价预测

数据集 house.csv 数据概览 代码 package org.apache.spark.examples.examplesforml import org.apache.spark.ml.feature.VectorAssembler import org.apache.spark.ml.regression.LinearRegression import org.apache.spark.sql.SparkSession import org.apache.spark.{SparkCon

掌握Spark机器学习库 大数据开发技能更进一步

第1章 初识机器学习在本章中将带领大家概要了解什么是机器学习.机器学习在当前有哪些典型应用.机器学习的核心思想.常用的框架有哪些,该如何进行选型等相关问题.1-1 导学1-2 机器学习概述1-3 机器学习核心思想1-4 机器学习的框架与选型.. 第2章 初识MLlib本章中,将介绍Spark的机器学习库,对比Spark当前两种机器学习库(MLLib/ML)的区别,同时介绍Spark机器学习库的应用场景以及行业应用优势.2-1 MLlib概述2-2 MLlib的数据结构2-3 MLlib与ml2-

掌握Spark机器学习库 大数据开发技能更进一步 高清无密

掌握Spark机器学习库 大数据开发技能更进一步 "大数据时代"已经不是一个新鲜词汇了,随着技术的商业化推广,越来越多的大数据技术已经进入人们的生活.与此同时,大数据技术的相关岗位需求也越来越多,更多的同学希望向大数据方向转型.本课程主要讲解Spark机器学习库,侧重实践的讲解,同时也以浅显易懂的方式介绍机器学习算法的内在原理.学习本课程,可以为想要转型大数据工程师或是入行大数据工作的同学提供实践指导作用.欢迎感兴趣的小伙伴们一起来学习. 第1章 初识机器学习 在本章中将带领大家概要了

掌握Spark机器学习库-07-线性回归算法概述

1)简介 自变量,因变量,线性关系,相关系数,一元线性关系,多元线性关系(平面,超平面) 2)使用线性回归算法的前提 3)应用例子 沸点与气压 浮力与表面积 原文地址:https://www.cnblogs.com/moonlightml/p/9787971.html

情感分析-R与spark机器学习库测试分类比较

1     环境 R 3.0以上版本 安装机器学习软件包: 说明:此两个包是R机器学习包.RTextTools包含文本处理,e1071包含分类器. > install.packages("RTextTools") > install.packages("e1071") 2     实验步骤 研究对象:http://www.xueqing.tv/cms/article/107#rd?sukey=3903d1d3b699c20870d8c0b36a06c86

掌握Spark机器学习库-07-回归算法原理

1)机器学习模型理解 统计学习,神经网络 2)预测结果的衡量 代价函数(cost function).损失函数(loss function) 3)线性回归是监督学习 原文地址:https://www.cnblogs.com/moonlightml/p/9787988.html

掌握Spark机器学习库-02-mllib数据格式

MLlib 1.MLlib介绍 1)MLlib特点 2)哪些算法 3)阅读官方文档 MLlib提供了哪些: 算法 特征工程 管道 持久化 2.MLlib数据格式 1)本地向量 2)标签数据 3)本地矩阵 4)分布式矩阵 5)分布式数据集:RDD,DATASET,DATAFRAME 原文地址:https://www.cnblogs.com/moonlightml/p/9783591.html

Spark机器学习——互动出版网

这篇是计算机类的优质预售推荐>>>><Spark机器学习> 当机器学习遇上最流行的并行计算框架Spark...... 编辑推荐 Apache Spark是一个分布式计算框架,专为满足低延迟任务和内存数据存储的需求而优化.现有并行计算框架中,鲜有能兼顾速度.可扩展性.内存处理以及容错性,同时还能简化编程,提供灵活.表达力丰富的强大API的,Apache Spark就是这样一个难得的框架. 本书介绍了Spark的基础知识,从利用Spark API来载入和处理数据,到将数据作

离线轻量级大数据平台Spark之MLib机器学习库概念学习

Mlib机器学习库 1.1机器学习概念 机器学习有很多定义,倾向于下面这个定义.机器学习是对能通过经验自动改进的计算机算法的研究.机器学习依赖数据经验并评估和优化算法所运行出的模型.机器学习算法尝试根据训练数据使得表示算法行为的数学目标最大化,并以此来进行预测或作出决定.机器学习问题分类为几种,包括分类.回归.聚类.所有的机器学习算法都经过一条流水线:提取训练数据的特征->基于特征向量训练模型->评估模型选择最佳.特征提取主要是提取训练数据中的数值特征,用于数学建模.机器学习一般有如下分类: