上采样和PixelShuffle(转)

有些地方还没看懂, mark一下

文章来源: https://blog.csdn.net/g11d111/article/details/82855946

去年曾经使用过FCN(全卷积神经网络)及其派生Unet,再加上在爱奇艺的时候做过一些超分辨率重建的内容,其中用到了毕业于帝国理工的华人博士Shi Wenzhe(在Twitter任职)发表的PixelShuffleReal-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network》的论文。PyTorch 0.4.1将这些上采样的方式定义为Vision Layers,现在对这4种在PyTorch中的上采样方法进行介绍。

0. 什么是上采样?

上采样,在深度学习框架中,可以简单的理解为任何可以让你的图像变成更高分辨率的技术。最简单的方式是重采样和插值:将输入图片input image进行rescale到一个想要的尺寸,而且计算每个点的像素点,使用如双线性插值bilinear等插值方法对其余点进行插值。

Unpooling是在CNN中常用的来表示max pooling的逆操作。这是从2013年纽约大学Matthew D. Zeiler和Rob Fergus发表的《Visualizing and Understanding Convolutional Networks》中引用的:因为max pooling不可逆,因此使用近似的方式来反转得到max pooling操作之前的原始情况:

记住max pooling做的时候的size,比如下图的一个4x4的矩阵,max pooling的size为2x2,stride为2,反卷积操作需要记住最大值的位置,将其余位置至为0就行。

Deconvolution(反卷积)在CNN中常用于表示一种反向卷积 ,但它并不是一个完全符合数学规定的反卷积操作。

Unpooling不同,使用反卷积来对图像进行上采样是可以习得的。通常用来对卷积层的结果进行上采样,使其回到原始图片的分辨率。

反卷积也被称为分数步长卷积(convolution with fractional strides)或者转置卷积(transpose convolution)或者后向卷积backwards strided convolution。

真正的反卷积如wikipedia里面所说,但是不会有人在实际的CNN结构中使用它。

1. Vision Layer

在PyTorch中,上采样的层被封装在torch.nn中的Vision Layers里面,一共有4种:

  • ① PixelShuffle
  • ② Upsample
  • ③ UpsamplingNearest2d
  • ④ UpsamplingBilinear2d

下面,将对其分别进行说明

1.1 PixelShuffle

正常情况下,卷积操作会使feature map的高和宽变小。

但当我们的stride=r1?<1 时,可以让卷积后的feature map的高和宽变大——即分辨率增大,这个新的操作叫做sub-pixel convolution,具体原理可以看PixelShuffleReal-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network》的论文。

pixelshuffle算法的实现流程如上图,其实现的功能是:将一个H × W的低分辨率输入图像(Low Resolution),通过Sub-pixel操作将其变为rH x rW的高分辨率图像(High Resolution)。

但是其实现过程不是直接通过插值等方式产生这个高分辨率图像,而是通过卷积先得到r2个通道的特征图(特征图大小和输入低分辨率图像一致),然后通过周期筛选(periodic shuffing)的方法得到这个高分辨率的图像,其中r为上采样因子(upscaling factor),也就是图像的扩大倍率。

定义

该类定义如下:

class torch.nn.PixleShuffle(upscale_factor)

  • 1
  • 1

这里的upscale_factor就是放大的倍数,数据类型为int

以四维输入(N,C,H,W)为例,Pixelshuffle会将为(?,r2C,H,W)的Tensor给reshape成(?,C,rH,rW)的Tensor。形式化地说,它的输入输出的shape如下:

  • 输入: (N,C x upscale_factor2,H,W)
  • 输出: (N,C,H x upscale_factor,W x upscale_factor)

例子

>>> ps = nn.PixelShuffle(3)
>>> input = torch.tensor(1, 9, 4, 4)
>>> output = ps(input)
>>> print(output.size())
torch.Size([1, 1, 12, 12])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5

怎么样,是不是看起来挺简单的?我将在最后完整的介绍一下1)转置卷积 2)sub-pixel 卷积

3)反卷积以及pixelshuffle这几个知识点。

1.2 Upsample(新版本中推荐使用torch.nn.functional.interpolate

对给定多通道的1维(temporal)、2维(spatial)、3维(volumetric)数据进行上采样。

对volumetric输入(3维——点云数据),输入数据Tensor格式为5维:minibatch x channels x depth x height x width

对spatial输入(2维——jpg、png等数据),输入数据Tensor格式为4维:minibatch x channels x height x width

对temporal输入(1维——向量数据),输入数据Tensor格式为3维:minibatch x channels x width

此算法支持最近邻,线性插值,双线性插值,三次线性插值对3维、4维、5维的输入Tensor分别进行上采样(Upsample)。

定义

该类定义如下:

class torch.nn.Upsample(size=None, scale_factor=None, mode=‘nearest‘, align_corners=None)

  • 1
  • 1

其中:

  • size 是要输出的尺寸,数据类型为tuple: ([optional D_out], [optional H_out], W_out)
  • scale_factor 在高度、宽度和深度上面的放大倍数。数据类型既可以是int——表明高度、宽度、深度都扩大同一倍数;亦或是tuple——指定高度、宽度、深度的扩大倍数。
  • mode 上采样的方法,包括最近邻(nearest),线性插值(linear),双线性插值(bilinear),三次线性插值(trilinear),默认是最近邻(nearest)。
  • align_corners 如果设为True,输入图像和输出图像角点的像素将会被对齐(aligned),这只在mode = linear, bilinear, or trilinear才有效,默认为False。

例子

>>> input = torch.arange(1, 5).view(1, 1, 2, 2).float()
>>> input
tensor([[[[ 1., 2.],
[ 3., 4.]]]])

>>> m = nn.Upsample(scale_factor=2, mode=‘nearest‘)
>>> m(input)
tensor([[[[ 1., 1., 2., 2.],
[ 1., 1., 2., 2.],
[ 3., 3., 4., 4.],
[ 3., 3., 4., 4.]]]])

>>> m = nn.Upsample(scale_factor=2, mode=‘bilinear‘) # align_corners=False
>>> m(input)
tensor([[[[ 1.0000, 1.2500, 1.7500, 2.0000],
[ 1.5000, 1.7500, 2.2500, 2.5000],
[ 2.5000, 2.7500, 3.2500, 3.5000],
[ 3.0000, 3.2500, 3.7500, 4.0000]]]])

>>> m = nn.Upsample(scale_factor=2, mode=‘bilinear‘, align_corners=True)
>>> m(input)
tensor([[[[ 1.0000, 1.3333, 1.6667, 2.0000],
[ 1.6667, 2.0000, 2.3333, 2.6667],
[ 2.3333, 2.6667, 3.0000, 3.3333],
[ 3.0000, 3.3333, 3.6667, 4.0000]]]])

>>> # Try scaling the same data in a larger tensor
>>>
>>> input_3x3 = torch.zeros(3, 3).view(1, 1, 3, 3)
>>> input_3x3[:, :, :2, :2].copy_(input)
tensor([[[[ 1., 2.],
[ 3., 4.]]]])
>>> input_3x3
tensor([[[[ 1., 2., 0.],
[ 3., 4., 0.],
[ 0., 0., 0.]]]])

>>> m = nn.Upsample(scale_factor=2, mode=‘bilinear‘) # align_corners=False
>>> # Notice that values in top left corner are the same with the small input (except at boundary)
>>> m(input_3x3)
tensor([[[[ 1.0000, 1.2500, 1.7500, 1.5000, 0.5000, 0.0000],
[ 1.5000, 1.7500, 2.2500, 1.8750, 0.6250, 0.0000],
[ 2.5000, 2.7500, 3.2500, 2.6250, 0.8750, 0.0000],
[ 2.2500, 2.4375, 2.8125, 2.2500, 0.7500, 0.0000],
[ 0.7500, 0.8125, 0.9375, 0.7500, 0.2500, 0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]])



>>> m = nn.Upsample(scale_factor=2, mode=‘bilinear‘, align_corners=True)
>>> # Notice that values in top left corner are now changed
>>> m(input_3x3)
tensor([[[[ 1.0000, 1.4000, 1.8000, 1.6000, 0.8000, 0.0000],
[ 1.8000, 2.2000, 2.6000, 2.2400, 1.1200, 0.0000],
[ 2.6000, 3.0000, 3.4000, 2.8800, 1.4400, 0.0000],
[ 2.4000, 2.7200, 3.0400, 2.5600, 1.2800, 0.0000],
[ 1.2000, 1.3600, 1.5200, 1.2800, 0.6400, 0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56

1.3 UpsamplingNearest2d

本质上其实就是对jpg、png等格式图像数据的Upsample(mode=‘nearest‘)

定义

 class torch.nn.UpsamplingNearest2d(size=None, scale_factor=None)

  • 1
  • 1

输入输出:

例子

>>> input = torch.arange(1, 5).view(1, 1, 2, 2)
>>> input
tensor([[[[ 1., 2.],
[ 3., 4.]]]])


>>> m = nn.UpsamplingNearest2d(scale_factor=2)
>>> m(input)
tensor([[[[ 1., 1., 2., 2.],
[ 1., 1., 2., 2.],
[ 3., 3., 4., 4.],
[ 3., 3., 4., 4.]]]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

1.4 UpsamplingBilinear2d

跟1.3类似,本质上其实就是对jpg、png等格式图像数据的Upsample(mode=‘bilinear‘)

定义

 class torch.nn.UpsamplingBilinear2d(size=None, scale_factor=None)

  • 1
  • 1

输入输出:

例子

>>> input = torch.arange(1, 5).view(1, 1, 2, 2)
>>> input
tensor([[[[ 1., 2.],
[ 3., 4.]]]])


>>> m = nn.UpsamplingBilinear2d(scale_factor=2)
>>> m(input)
tensor([[[[ 1.0000, 1.3333, 1.6667, 2.0000],
[ 1.6667, 2.0000, 2.3333, 2.6667],
[ 2.3333, 2.6667, 3.0000, 3.3333],
[ 3.0000, 3.3333, 3.6667, 4.0000]]]])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

2. 知识回顾

本段主要转自《一边Upsample一边Convolve:Efficient Sub-pixel-convolutional-layers详解

2.1 Transposed convolution(转置卷积)

下面以一维向量进行卷积为例进行说明(stride=2),x为输入y为输出,通过1维卷积核/滤波器f来实现这个过程,x的size为8,f为[1, 2, 3, 4],y为5,x中灰色的方块表示用0进行padding。在f权重中的灰色方块代表f中某些值与x中的0进行了相乘。下图就是1维卷积的过程,从x到y。

容易地,可以发现1维卷积的方式很直观,那么什么是转置卷积呢?故名思意,就是将卷积倒过来

如上图所示,1维卷积核/滤波器被转过来了,这里进行一下额外的说明:

假设x = [x1?, x2?, …, x5?],y = [y1?, y2?, …, y12?],则最上面的白色块体对应的是y3?。那么:

y3? = 3x1?+x2?

2.2 Sub-pixel convolution

还是以一维卷积为例,输入为x = [x1?, x2?, …, x5?],输出为y = [y1?, y2?, …, y12?]。sub-pixel convolution(stride=1/2)如图:

1.1 PixelShuffle中说过,sub-pixel convolution的步长是介于0到1之间的,但是这个操作是如何实现的呢?简而言之,分为两步:

  • ① 将stride设为1
  • ② 将输入数据dilation(以stride=1/2为例,sub-pixel是将输入x的元素之间插入一些元素0,并在前后补上一些元素0),或者说根据分数索引(fractional indices)重新创建数据的排列形式。

2.3 Deconvolution

这里以2维卷积来进行演示,输入一个4 x 4的单通道图像,卷积核取1个4 x 4的,假设这里取上采样比例为2,那么我们的目标就是恢复成一个8 x 8的单通道图像。

如上图,我们首先通过fractional indices从原input中创建一个sub-pixel图像,其中白色的像素点就是原input中的像素(在LR sapce中),灰色像素点则是通过zero padding而来的。

用一个4 x 4的卷积核来和刚才生成的sub-pixel图像进行stride=1的卷积,首先发现卷积核和sub-pixel图像中非零的像素进行了第一次有效卷积(图中紫色像素代表被激活的权重),然后我们将sub-pixels整体向右移动一格,让卷积核再进行一次卷积操作,会发现卷积核中蓝色像素的权重被激活,同理绿色红色(注意这里是中间的那个8×8的sub-pixel图像中的白色像素点进行移动,而每次卷积的方式都相同)。

最后我们输出得到8 x 8的高分辨率图像(HR图像),HR图像和sub-pixel图像的大小是一致的,我们将其涂上颜色,颜色代表卷积核中权重和sub-pixel图像中哪个像素点进行了卷积(也就是哪个权重对对应的像素进行了贡献)。

Deconvlution的动态过程可见我之前翻译过的一篇文章《CNN概念之上采样,反卷积,Unpooling概念解释

显然,我们可以看出,紫、蓝、绿、红四部分是相互独立的,那么,可以将这个4 x 4的卷积核分成4个2 x 2的卷积核如下:

注意,这个操作是可逆的。因为每个卷积权重在操作过程中都是独立的。

因此,我们可以直接对原始图像(未经过sub-pixel处理)直接进行2 x 2的卷积,并对输出进行周期筛选(periodic shuffling)来得到同样的8 x 8的高分辨率图像。

3. 说明

在新版本PyTorch中,这些插值Vision Layer都不推荐使用了,官方的说法是将其放在了torch.nn.functional.interpolate中,用此方法可以更个性化的定制用户的上采样或者下采样的需求。

4. 参考资料

[1] 一边Upsample一边Convolve:Efficient Sub-pixel-convolutional-layers详解

[2] 双线性插值(Bilinear Interpolation)

[3] torch.nn.functional.interpolate说明

[4] PyTorch 0.4.1——Vision layers

        </div>

原文地址:https://www.cnblogs.com/kk17/p/10094160.html

时间: 2024-07-31 21:16:52

上采样和PixelShuffle(转)的相关文章

图像上采样和图像下采样

#1. 图像下采样和上采样的概念#无论是图像的上采样还是下采样都可以使用matlab中的imresize函数来实现,而这些操作在使用到图像金字塔的算法中,必然是不可或缺的操作步骤.需要指出的是,当我们对一幅图像先下采样再上采样回原尺寸,得到的结果就是原图像的低频成分了.下面简要介绍2者的概念. 1.1 图像下采样 图像下采样(subsampled)可以通俗地理解成缩小图像,又称为降采样(downsampled).其目的有两个:1)使得图像符合显示区域的大小:2)生成对应图像的缩略图.##1.2

上采样与下采样

#include <opencv2/opencv.hpp> #include <iostream> #include <math.h> using namespace cv; using namespace std; Mat src, dst,dst2; //膨胀腐蚀的应用:消除噪声 int main() { //原图 src = imread(".//pic//kate.png", IMREAD_UNCHANGED); char* INPUT_WI

音频中采样位数,采样率,比特率的名词解释(转)

采样位数: 采样位数可以理解为采集卡处理声音的解析度.这个数值越大,解析度就越高,录制和回放的声音就越真实.我们首先要知道:电脑中的声音文件是用数字0和1来表示的.所以在电脑上录音的本质就是把模拟声音信号转换成数字信号.反之,在播放时则是把数字信号还原成模拟声音信号输出.采集卡的位是指采集卡在采集和播放声音文件时所使用数字声音信号的二进制位数.采集卡的位客观地反映了数字声音信号对输入声音信号描述的准确程度.8位代表2的8次方--256,16位则代表2的16次方--64K.比较一下,一段相同的音乐

非下采样Contourlet(NSCT)变换

顾名思义,NSCT变换核心是Contourlet,即关于边缘的变换. 所谓非下采样是基于频域的,根据个人理解,这就相当于,对某一图像而言,首先设定一个频率阈值,然后通过滤波器筛选出大于等于这个阈值频率的图像(当然这不是一次性得筛选过程,而是迭代使用非下采样二通道带通滤波器的过程),具体过程见下面的图1. 这时,如果对空域.频域.时域不太了解的话,就又是一团浆糊.关于这三个概念可以参照<图像处理与识别学习小结><数字图像处理3--空间域,时域,频域的理解>两篇博文. 再说回NSCT变

【Valse首发】CNN的近期进展与实用技巧(上)

作者:程程链接:https://zhuanlan.zhihu.com/p/21432547来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 深度学习大讲堂致力于推送人工智能,深度学习方面的最新技术,产品以及活动.请关注我们的知乎专栏! 一.DL基础理论 本页PPT给出了本节内容概要,我们从MCP神经元模型开始,首先回顾全连接层.卷积层等基础结构单元,Sigmoid等激活函数,Softmax等损失函数,以及感知机.MLP等经典网络结构.接下来,将介绍网络训练方法,包括

Opencv图像识别从零到精通(29)-----图像金字塔,向上上下采样,resize插值

金字塔的底部是待处理图像的高分辨率表示,而顶部是低分辨率的近似.我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低 一.两个金字塔 高斯金字塔(Gaussianpyramid): 用来向下采样,主要的图像金字塔 拉普拉斯金字塔(Laplacianpyramid): 用来从金字塔低层图像重建上层未采样图像,在数字图像处理中也即是预测残差,可以对图像进行最大程度的还原,配合高斯金字塔一起使用. 高斯金字塔不同(DoG)又称为拉普拉斯金字塔,给出计算方式前,先加强一下定义 记得在上面我

470. Implement Rand10() Using Rand7() (拒绝采样Reject Sampling)

问题 已提供一个Rand7()的API可以随机生成1到7的数字,使用Rand7实现Rand10,Rand10可以随机生成1到10的数字. 思路 简单说: (1)通过(Rand N - 1) % 10 + 1的方法,可以求出Rand10,当N是10的倍数的时候. (2)用( Rand7 - 1 ) * 7 + Rand7可以随机生成1-49,记作Rand49. (3)如果可以通过Rand49计算出Rand40,即随机生成1-40,就可以通过Rand40 % 10来取得Rand10. (4)如何通过

[转]目标检测入门之(一)综述(上)

导言:目标检测的任务表述 如何从图像中解析出可供计算机理解的信息,是机器视觉的中心问题.深度学习模型由于其强大的表示能力,加之数据量的积累和计算力的进步,成为机器视觉的热点研究方向. 那么,如何理解一张图片?根据后续任务的需要,有三个主要的层次. 图像理解的三个层次 一是分类(Classification),即是将图像结构化为某一类别的信息,用事先确定好的类别(string)或实例ID来描述图片.这一任务是最简单.最基础的图像理解任务,也是深度学习模型最先取得突破和实现大规模应用的任务.其中,I

图像的采样、DOG

一.上采样与降采样  二.Dog--高斯不同 代码如下: #include <opencv2/opencv.hpp> #include <iostream> #include "math.h" using namespace cv; int main(int agrc, char** argv) { Mat src, dst; src = imread("L:/6.jpg"); if (!src.data) { printf("co