题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5496
Beauty of Sequence
Problem Description
Sequence is beautiful and the beauty of an integer sequence is defined as follows: removes all but the first element from every consecutive group of equivalent elements of the sequence (i.e. unique function in C++ STL) and the summation of rest integers is the beauty of the sequence.
Now you are given a sequence A of n integers {a1,a2,...,an}. You need find the summation of the beauty of all the sub-sequence of A. As the answer may be very large, print it modulo 109+7.
Note: In mathematics, a sub-sequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements. For example {1,3,2} is a sub-sequence of {1,4,3,5,2,1}.
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer n (1≤n≤105), indicating the size of the sequence. The following line contains n integers a1,a2,...,an, denoting the sequence(1≤ai≤109).
The sum of values n for all the test cases does not exceed 2000000.
Output
For each test case, print the answer modulo 109+7 in a single line.
Sample Input
3
5
1 2 3 4 5
4
1 2 1 3
5
3 3 2 1 2
Sample Output
240
54
144
题意分析:
题目 是让我们求所有子序和的总和,并且在一个子序列中相邻且相等的数不重复累加(相当于当成一个数)。
题解:
当你一个问题想不通的时候,可以换一个角度来思考。
一开始直接想统计结果,但是明显统计量是天文数字,于是觉得是不是有什么规律,也没想出来,于是就想从反面思考这个问题,既然不能直接求和,那么能不能转而去求每个点对最后的ans的贡献呢。小试了一下,发现可行。
另外一个问题,在一个子序列中相邻相同点只考虑一次。可以选择在这样的子序列中只计算第一个点的贡献值。也就是,考虑一个点的贡献值,只要考虑那些包含它且在它前面没有与它相等的点的所有子序列,我们可以换个角度去求这样的子序列个数,统计所有包含改节点的子序列,然后减去不符合条件的子序列(具体看代码注释)
ac代码:
1 #include<iostream> 2 #include<cstdio> 3 #include<map> 4 using namespace std; 5 typedef long long LL; 6 7 const int maxn = 1e5 + 10; 8 const int mod = 1e9 + 7; 9 10 int a[maxn]; 11 int n; 12 13 int bin[maxn]; 14 map<int, int> mymap; 15 16 void table() { 17 bin[0] = 1; 18 for (int i = 1; i < maxn; i++) bin[i] = bin[i - 1] * 2 % mod; 19 } 20 21 void init() { 22 mymap.clear(); 23 } 24 25 int main() { 26 int tc; 27 table(); 28 scanf("%d", &tc); 29 while (tc--) { 30 init(); 31 scanf("%d", &n); 32 LL ans = 0; 33 for (int i = 1; i <= n; i++) { 34 scanf("%d", a + i); 35 //mymap[a[i]]表示在i之前,所有以a[i]结尾的子序列的数目 36 //bin[n-1]表示所有包含i的子序列,而mymap[a[i]]*bin[n-i]代表的就是不符合条件的子序列了。 37 LL tmp = ((bin[n - 1] - (LL)bin[n - i] * mymap[a[i]])%mod +mod) % mod; 38 ans = (ans + a[i] * tmp) % mod; 39 mymap[a[i]] += bin[i - 1]; 40 mymap[a[i]] %= mod; 41 } 42 printf("%lld\n", ans); 43 } 44 return 0; 45 }