FLASH位宽为8、16、32时,CPU与外设之间地址线的连接方法

转 http://blog.csdn.net/linweig/article/details/5556819

flash连接CPU时,根据不同的数据宽度,比如16位的NOR FLASH (A0-A19),处理器的地址线要(A1-A20)左移偏1位。为什么要偏1位?

从软件和CPU的角度而言,一个地址对应一个字节,就是8位数据。这是肯定的,不要怀疑这点。

对于具体器件而言,它的位宽是一定的,所谓位宽,指的是“读/写操作时,最小的数据单元”──别说最小单元是“位”,一般设备上没有单独的“位操作”,修改位时通过把整个字节、字或双字读出来、修改,再回写。

CPU的地址线(A0-A20)对应的最小数据单元是字节,即8位;
而位宽为16的NOR FLASH的地址线(A0-A19)对应的最小数据单元是16位。
这两个怎么对应起来?

如果说外设的位宽是16,难道我们写程序时会“特意”以16位进行操作吗?不用的,我们写程序时根本不用管外设位宽是8、16还是32。

仔细想想,其实是可以想通的:既然CPU、外设NOR FLASH的最小读/写单元已经固定,那么肯定就是CPU与NOR FLASH之间有个中间层,它来做处理:
这个中间层被称为“Memory Controller”,CPU要进行读写操作时,“Memory Controller”根据NOR FLASH的位宽,每次总是读/写16位数据。
以读操作为例:
CPU想进行8位操作时,它选择其中的8位返回给CPU;
CPU想进行16位操作时,它直接把这16位数据返回给CPU;
CPU想进行32位操作时,它发起2次读/写,把结果组合成32位返回给CPU。

现在的连线是:CPU的(A1-A20)接到 16位的NOR FLASH (A0-A19),即CPU的A0不接──这说明:不管A0是0还是1,NOR FLASH接收到的地址是一样的。
CPU发出地址0bxxxxxxxxx0、0bxxxxxxxxx1时,NOR FLASH看到的都是0bxxxxxxxxx,返回给“Memory Controller”的都是同一个16位数据。
再由“Memory Controller”选择其中的低8位或高8位给CPU。

“Memory Controller”会帮助我们做这些事情,举例为证:
1. 软件要读取地址0上的8位数据时,硬件是这样进行的:
  ① “Memory Controller”发出0b000000000000000000000的地址信号,NOR FLASH的A0-A19线上的信号是:0b00000000000000000000
  ② NOR FLASH在数据总线D0~D15上提供一个16位的数据,这是NOR FLASH中的第1个“最小数据单元” 
  ③ “Memory Controller”读入这个16位数据
  ④ “Memory Controller”把这个16位数据的低8位返回给CPU,这就是一个8位数据。

2. 软件要读取地址1上的8位数据时,硬件是这样进行的:
  ① “Memory Controller”发出0b000000000000000000001的地址信号,NOR FLASH的A0-A19线上的信号是:0b00000000000000000000
  ② NOR FLASH在数据总线D0~D15上提供一个16位的数据,这是NOR FLASH中的第1个“最小数据单元” 
  ③ “Memory Controller”读入这个16位数据
  ④ “Memory Controller”把这个16位数据的高8位(注意,前面的低8位)返回给CPU,这就是一个8位数据。

3. 软件要读取地址2上的8位数据时,硬件是这样进行的:
  ① “Memory Controller”发出0b000000000000000000010的地址信号,NOR FLASH的A0-A19线上的信号是:0b00000000000000000001
  ② NOR FLASH在数据总线D0~D15上提供一个16位的数据,这是NOR FLASH中的第2个“最小数据单元” 
  ③ “Memory Controller”读入这个16位数据
  ④ “Memory Controller”把这个16位数据的低8位返回给CPU,这就是一个8位数据。

4. 软件要读取地址3上的8位数据时,硬件是这样进行的:
  ① “Memory Controller”发出0b000000000000000000011的地址信号,NOR FLASH的A0-A19线上的信号是:0b00000000000000000001
  ② NOR FLASH在数据总线D0~D15上提供一个16位的数据,这是NOR FLASH中的第2个“最小数据单元” 
  ③ “Memory Controller”读入这个16位数据
  ④ “Memory Controller”把这个16位数据的高8位(注意,第3点是低8位)返回给CPU,这就是一个8位数据。

5. 软件要读取地址0和1上的16位数据时,硬件是这样进行的:
  ① “Memory Controller”发出0b000000000000000000000的地址信号,NOR FLASH的A0-A19线上的信号是:0b00000000000000000000
  ② NOR FLASH在数据总线D0~D15上提供一个16位的数据,这是NOR FLASH中的第1个“最小数据单元” 
  ③ “Memory Controller”读入这个16位数据
  ④ “Memory Controller”把这个16位数据返回给CPU

6. 软件要读取地址2和3上的16位数据时,硬件是这样进行的:
  ① “Memory Controller”发出0b000000000000000000010的地址信号,NOR FLASH的A0-A19线上的信号是:0b00000000000000000001
  ② NOR FLASH在数据总线D0~D15上提供一个16位的数据,这是NOR FLASH中的第2个“最小数据单元” 
  ③ “Memory Controller”读入这个16位数据
  ④ “Memory Controller”把这个16位数据返回给CPU

7. 软件要读取地址0、1、2、3上的32位数据时,硬件是这样进行的:
  ① “Memory Controller”发出0b000000000000000000000的地址信号,NOR FLASH的A0-A19线上的信号是:0b00000000000000000000
  ② NOR FLASH在数据总线D0~D15上提供一个16位的数据,这是NOR FLASH中的第1个“最小数据单元” 
  ③ “Memory Controller”读入这个16位数据
  
  ④ “Memory Controller”发出0b000000000000000000010的地址信号,NOR FLASH的A0-A19线上的信号是:0b00000000000000000001
  ⑤ NOR FLASH在数据总线D0~D15上提供一个16位的数据,这是NOR FLASH中的第2个“最小数据单元” 
  ⑥ “Memory Controller”读入这个16位数据
  ⑦ “Memory Controller”把两个16位的数据组合成一个32位的数据,返回给CPU。
  
  从1~7可知:
  ① 对于软件而言,它不知道底下发生了什么事,它只管结果:
      读取地址0的8位数据,就得到了一个8位数据;读取地址1的8位数据,就得到另一个紧挨着的8位数据
      读取地址0开始的16位数据,就得到了一个16位数据;读取地址2开始的16位数据,就得到另一个紧挨着的16位数据
      读取地址0开始的32位数据,就得到了一个32位数据;读取地址4开始的32位数据,就得到另一个紧挨着的32位数据
  ② 对于NOR FLASH,它只按照A0-A19地址线,提供16位数据,才不管软件要的是8位、16位,还是32位呢。
  ③ “Memory Controller”完成了这些位宽之间的数据选择、合并。

所以:
外设位宽是8时,CPU的A0~AXX与外设的A0~AXX直接相连
外设位宽是16时,CPU的A1~AXX与外设的A0~AYY直接相连,表示不管CPU的A0是0还是1,外设看到的都是同一个地址,对应16位的数据,“Memory Controller”对数据进行选择或组合,再提供给CPU。
外设位宽是32时,CPU的A2~AXX与外设的A0~AZZ直接相连,表示不管CPU的A0A1是00,01,10还是11,外设看到的都是同一个地址,对应32位的数据,“Memory Controller”对数据进行选择或组合,再提供给CPU。

但是也不是所有位宽16bit的flash与cpu的连接 都是像上述那样错开一位的,与具体的flash芯片设计有关系,所以需要查看其datsheet,下文以芯片士通的29LV650和intel的E29F128为例进行说明


这里看来intel nor flash在位宽为16bit时(由VPEN选择),把A0忽略掉了(需要查手册查证)

下面研究一下系统总线地址(cpu_addr)、宽度(bus_width)与nor flash设备总线地址(device_addr)、位度(device_width)的区别与联系:

一、对于nor flash设备来说
1、nor flash设备的位宽视芯片厂商而定,有x8、x16两总方式(虽然现在主要使用x16的方式,不过内核于启动代码里面仍然保留着对x8和x16两种方式的支持);把多片nor flash并起来使用可以扩大位宽(比如两片x8的nor flash并起来使用位宽扩大为x16)。

2、nor flash设备的总线地址(寻址)范围视具体芯片以及其采用的位宽而定:

以富士通的29LV650为例:
(29LV650的容量是8Mbyte,共128个sector,每个sector的大小是64 kbyte)
1)如果选择位宽为x8,设备总线的每个地址代表了一个byte的存储单元,固其总线地址范围为8M(0x000000~0x7fffff);
2)如果选择位宽为x16,设备总线的每个地址代表了两个byte的存储单元,固其总线地址范围为4M(0x000000~0x3fffff);

再来看看intel的E29F128:
(E29F128的容量为16Mbyte,共128个sector,每个sector的大小是128Kbyte)
1)如果选择位宽为x8,设备总线的每个地址代表了一个byte的存储单元,固其总线地址范围为16M(0x000000~0xffffff);
2)如果选择位宽为x16,情况和富士通的29LV650不同,这时候设备的A0脚不可用,所以你不能访问到奇地址的存储单元,而只能0、2、4...地址的来访问,其总线地址范围为8M(0x000000~0xffffff的偶地址)

二、对于系统来说
以S3C2410为例,cpu总线宽度是32位,可以通过8、16、32位的总线宽度来访问nor flash设备,视设备的位宽和是否并起来使用而定:
注:
    buswidth=device_width*interleave:

然而,在cpu的眼里,每一个地址代表1byte的存储单元,不像nor flash设备那样,还有byte、word之分。

三、好了,了解了系统总线地址、宽度与nor flash设备总线地址、位宽后的区别后,
现在讨论一下cpu与nor flash的接法问题(通过举例来说明):

1、对于富士通的29LV650
1)选择x8方式,cpu的A0~A22接nor flash的A0~A22
2)选择x16方式,cpu的A1~A22接nor flash的A0~A21
注意:
    cpu的A1接nor flash的A0,cpu只能访问偶地址,cpu的一次操作访问了2byte大小的存储单元。

2、对于intel的E29F128
1)选择x8方式,cpu的A0~A23接nor flash的A0~A23
2)选择x16方式,由于这时候地址线A0不再有效(这点与富士通的29LV650不同),
intel E29F128的A1等价于富士通的29LV650的A0,所以系统总线A1~A23接nor flash的A1~A23

四、在cpu对nor flash寻址方面

1、对于富士通的29LV650
1)在x8模式,系统总线和nor flash总线一一对应,直接访问
2)在x16模式,nor flash的对外总线缩小一半,一个地址可寻址的存储单元由原来的1 byte变为1 word(1 sector的地址范围由原来的1<<16变为1<<15),所以我们对其进行寻址的时候,需要把所要寻址的存储单元地址>>1位
注意:
    我这里说的是以byte为单位的存储单元地址
    
    由于系统总线的A1接nor flash的A0,固系统总线地址等于nor flash总线地址<<1位
注意:
    我这里说的是nor flash的总线地址,对于x8方式以byte为单位,对于x16方式以word为单位

2、对于intel的E29F128
1)在x8模式,系统总线和nor flash总线一一对应,直接访问
2)在x16模式,nor flash总线的A0不再使用,有效的总线为A1~A23,所以我们对其寻址的时候,不必像富士通的29LV650那样需要把所要访问的存储单元地址>>1位(因为A0不再有效,等于奇地址自动被忽略,只有偶地址起作用)
同样:
    由于nor flash总线的A0不起作用,系统总线的A1接nor flash的A1,所以我们只要直接给出存储单元的地址即可,不比对其进行<<1位操作(不过由于设备总线A0不起作用,所以系统只能访问到偶地址的存储单元,奇地址将会被忽略)

时间: 2024-12-22 21:56:09

FLASH位宽为8、16、32时,CPU与外设之间地址线的连接方法的相关文章

Flash的不同位宽与CPU地址线的接线问题?

一般Flash都有8.16.32等这些不同的位宽,当然说白了就是Flash的数据线位数. 在Flash与CPU的地址线的连接问题时:不同位宽的有不同的连接方法: 一般是:位宽为8时CPU的ADDR0与Flash的A0相连,其他的按顺序依次往下连接: 位宽为16时CPU的ADDR1与Flash的A0相连,其他的按顺序依次往下连接: 位宽为32时CPU的ADDR2与Flash的A0相连,其他的按顺序依次往下连接: 怎么对应起来的呢?    参考博客:http://blog.csdn.net/linw

《80X86汇编语言程序设计教程》十一 32位代码段和16位代码段切换实例

1.  演示32位代码段与16位代码段之间的切换.实现的功能是以十六进制和ASCII码字符两种形式显示从内存地址100000H开始的16个字节的内容. 2.  源代码如下: 1 ;DosTest.Asm 2 ;16位偏移的段间转移指令的宏定义 3 ;使用于16位段,用于跳转到32位目的段 4 ;注意:标号偏移必须在16位二进制符号数数能表示的范围之内 5 JUMP16 macro selector,offsetv 6 db 0eah ;操作码 7 dw offsetv ;16位偏移 8 dw s

16位的MD5加密和32位MD5加密的区别

16位的MD5加密和32位MD5加密的区别 MD5加密后所得到的通常是32位的编码,而在不少地方会用到16位的编码它们有什么区别呢?16位加密就是从32位MD5散列中把中间16位提取出来!其实破解16位MD5散列要比破解32位MD5散列还慢因为他多了一个步骤,就是使用32位加密后再把中间16位提取出来, 然后再进行对比而破解32位的则不需要,加密后直接对比就可以了 admin 的加密代码:16位加密:7a57a5a743894a0e32位加密:21232f297a57a5a743894a0e4a

FPGA设计千兆以太网MAC(3)——数据缓存及位宽转换模块设计与验证

本文设计思想采用明德扬至简设计法.上一篇博文中定制了自定义MAC IP的结构,在用户侧需要位宽转换及数据缓存.本文以TX方向为例,设计并验证发送缓存模块.这里定义该模块可缓存4个最大长度数据包,用户根据需求改动即可. 该模块核心是利用异步FIFO进行跨时钟域处理,位宽转换由VerilogHDL实现.需要注意的是用户数据包位宽32bit,因此包尾可能有无效字节,而转换为8bit位宽数据帧后是要丢弃无效字节的.内部逻辑非常简单,直接上代码: 1 `timescale 1ns / 1ps 2 3 //

内存寻址能力与CPU的位宽有关系吗?

答案是:没有关系.CPU的寻址能力与它的地址总线位宽有关,而我们通常说的CPU位宽指的是数据总线位宽,它和地址总线位宽半毛钱关系也没有,自然也与寻址能力无关. 简单的说,CPU位宽指的是一个时钟周期内CPU能处理的二进制位数,如8086 CPU是16位的,可以一次处理2个字节(16个bit),80386 CPU是32位,能一次处理4个字节,目前的CPU基本上64位的了,一次能处理8个字节.我们的Windows操作系统也分为32位和64位,主要是针对上面CPU的位宽做了些优化,比如32位的CPU就

s3c2440裸机编程-内存控制器(二、不同位宽设备的连接)

不同位宽设备的连接 我们先看一下2440芯片手册上外设rom是如何与CPU地址总线连接的. 8bit rom与CPU地址线的连接 8bit*2 rom与CPU地址线的连接 8bit*4 rom与CPU地址线的连接 16bit rom与CPU地址线的连接 16bit*2 rom与CPU地址线的连接 从上面的图中,我们知道可以对2片位宽为8bit的外设扩展级联成1个16bit的外设,同理可用4片位宽为8bit的外设进行级联成1个32bit的外设... 从上面的图中,我们还看见一个规律: 当外设总线位

呃,如何使 .NET 程序,在 64位 系统 中,以 32位 模式运行。

其实最简单的方法就是在解决方案中,把平台设为 x86 就好了哈~   但是今天遇到一个第三方的软件,它调用的一个 dll 是 32位 的,可能它没有测试过在 64位 系统下运行的情况,它在编译时是按默认的配置设为了 Any CPU. 但是在 64位 系统中以默认 64位 模式运行时,再调用 32位 的 dll 就报异常了... 于是想到的一个办法就是让它在 64位 系统中,以 32位 模式运行就好了~   在网上搜了一下,没想到 .NET 本身就提供了这个修改工具,叫做 CorFlags.exe

Linux判断CPU是32位还是64位,判断系统是32位还是64位

from:http://www.ipcpu.com/2010/08/linux-cpu-32-64/ 本文仅限于服务器CPU和Linux系统讨论,与台式电脑.笔记本无关. 32位.64位不能乱装,64的能装32位的,因为64位的CPU可以兼容32位,32位的装不了64位的.最近部署了MongoDB,系统是32位的提示会有最大文件2G的限制.还有最常见的问题32位系统不支持4G以上内存,即使打PAE效率也受影响. 1.判断CPU是32位还是64位 这个问题比较有意思,网上给出的办法都是判断了系统的

MySQL----数据的显示位宽

问题:在MySQL表中的列可以定义它显示的位宽.那么定义了位宽会不会影响数据的取值范围呢? 测试: 1.定义一个用于测试的表 create table t(x int,y int(2),z int(2) zerofill); 2.插入数据以进行测试 insert into t(x,y,z) values(9,9,9); #插入一些在范围内的数据. insert into t(x,y,z) values(100,100,100); #插入超出范围的数据. 3.测试: select * from t