51 nod 1055 最长等差数列(dp)

1055 最长等差数列

基准时间限制:2 秒 空间限制:262144 KB 分值: 80 难度:5级算法题

N个不同的正整数,找出由这些数组成的最长的等差数列。

例如:1 3 5 6 8 9 10 12 13 14

等差子数列包括(仅包括两项的不列举)

1 3 5

1 5 9 13

3 6 9 12

3 8 13

5 9 13

6 8 10 12 14

其中6 8 10 12 14最长,长度为5。

Input

第1行:N,N为正整数的数量(3 <= N <= 10000)。
第2 - N+1行:N个正整数。(2<= A[i] <= 10^9)

Output

最长等差数列的长度。

Input示例

10
1
3
5
6
8
9
10
12
13
14

Output示例

5
/*
51 nod 1055 最长等差数列(dp)

problem:
N个不同的正整数,找出由这些数组成的最长的等差数列

solve:
用dp[i][j]表示最后一位在i,倒数第二位在j的等差数列.然后通过求差值就能得到它的上一个状态
递推下去就能得出结果.
最开始TL,感觉是map的问题. 结果小伙伴帮我加了个判断就剪过了 - -

hhh-2016/09/16-20:34:58
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <math.h>
#include <queue>
#include <set>
#include <map>
#define lson  i<<1
#define rson  i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define scanfi(a) scanf("%d",&a)
#define scanfs(a) scanf("%s",a)
#define scanfl(a) scanf("%I64d",&a)
#define scanfd(a) scanf("%lf",&a)
#define key_val ch[ch[root][1]][0]
#define eps 1e-7
#define inf 0x3f3f3f3f3f3f3f3f
using namespace std;
const ll mod = 1e9+7;
const int maxn = 10010;
const double PI = acos(-1.0);

template<class T> void read(T&num)
{
    char CH;
    bool F=false;
    for(CH=getchar(); CH<‘0‘||CH>‘9‘; F= CH==‘-‘,CH=getchar());
    for(num=0; CH>=‘0‘&&CH<=‘9‘; num=num*10+CH-‘0‘,CH=getchar());
    F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p)
{
    if(!p)
    {
        puts("0");
        return;
    }
    while(p) stk[++ tp] = p%10, p/=10;
    while(tp) putchar(stk[tp--] + ‘0‘);
    putchar(‘\n‘);
}
short dp[maxn][maxn];
int a[maxn];
map<int,int> mp;
int main()
{
    int n;
    read(n);
    mp.clear();
    for(int i =1; i <= n; i++)
        read(a[i]);
    sort(a+1,a+n+1);
    for(int i = 1;i <= n;i++)
        mp[a[i]] = i;

    dp[1][1] = 1;
    short ans = 0;
    for(int i = 1; i <= n; i++)
    {
        for(int j = i-1; j >= 1; j--)
        {
            int t = a[i] - a[j];
            if(t*ans>a[n]-a[1])break;
            int to = a[j]- t;
            if(to < 0 || mp[to] < 1 || mp[to] >= j)
                dp[i][j] = 2;
            else
                dp[i][j] = dp[j][mp[to]] + 1;
            ans = max(ans,dp[i][j]);
        }
    }
    print(ans);
    return 0;
}

  

时间: 2024-11-25 08:35:24

51 nod 1055 最长等差数列(dp)的相关文章

1055 最长等差数列

1055 最长等差数列 基准时间限制:2 秒 空间限制:262144 KB N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 10 12 13 14 等差子数列包括(仅包括两项的不列举) 1 3 5 1 5 9 13 3 6 9 12 3 8 13 5 9 13 6 8 10 12 14 其中6 8 10 12 14最长,长度为5. Input 第1行:N,N为正整数的数量(3 <= N <= 10000). 第2 - N+1行:N个正整数.(2<= A

51 nod 1610 路径计数(Moblus+dp)

1610 路径计数 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 路径上所有边权的最大公约数定义为一条路径的值. 给定一个有向无环图.T次修改操作,每次修改一条边的边权,每次修改后输出有向无环图上路径的值为1的路径数量(对1,000,000,007取模). Input 第一行两个整数n和m,分别表示有向无环图上的点数和边数.(1<=n<=100,1<=m<=50,000) 第2~m+1行每行三个数x,y,z,表示有一条从x到y权值为z的边.(1

51nod 1055 最长等差数列

http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1055 题意: 思路:先固定一个位置,然后从该中心点出发向两边扫,确实很难想到啊... 1 #include<iostream> 2 #include<algorithm> 3 #include<cstring> 4 #include<cstdio> 5 #include<vector> 6 #include<sta

51 nod 1522 上下序列——序列dp

题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1522 很好的思想.考虑从小到大一对一对填数,这样也能对它的大小限制做一些操作了. 因为从小到大,所以只能全填在左边.全填在右边.两边各填一个.记录左边填到了哪个位置,就可知右边填到了哪个位置.转移之前判断一下这样填是否合法即可. 新的不合法的状态只会和现在填的两个位置有关. 注意输入格式!!符号前后有空格!!! #include<iostream> #inclu

51nod1055 最长等差数列

基准时间限制:2 秒 空间限制:262144 KB 分值: 80 N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 10 12 13 14 等差子数列包括(仅包括两项的不列举) 1 3 5 1 5 9 13 3 6 9 12 3 8 13 5 9 13 6 8 10 12 14 其中6 8 10 12 14最长,长度为5. Input 第1行:N,N为正整数的数量(3 <= N <= 10000). 第2 - N+1行:N个正整数.(2<= A[i] &

51 nod 1766 树上的最远点对(线段树+lca)

1766 树上的最远点对 基准时间限制:3 秒 空间限制:524288 KB 分值: 80 难度:5级算法题 n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个区间内各选一点之间的最大距离,即你需要求出max{dis(i,j) |a<=i<=b,c<=j<=d} (PS 建议使用读入优化) Input 第一行一个数字 n n<=100000. 第二行到第n行每行三个数字描述路的情况, x,y,z (1<=x,y<=n,1<

BZOJ 3357: [Usaco2004]等差数列( dp )

dp(x, p) 表示序列中第x个数, 上一个数是p构成的等差数列的最长. 转移时从[1, x)中枚举p = seq[] 就行了.时间复杂度O(n²logn) --------------------------------------------------------------------------------- #include<bits/stdc++.h> #define rep(i, n) for(int i = 0; i < n; i++) #define Rep(i,

51 nod 1427 文明 (并查集 + 树的直径)

1427 文明 题目来源: CodeForces 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 安德鲁在玩一个叫“文明”的游戏.大妈正在帮助他. 这个游戏里面有n个城市和m条双向的道路.城市从1到n编号.对于每一对城市,他们之间要么有唯一的一条道路,要么就是不可互达.一条道路的定义是一个包含不同城市的序列 v1, v2,...,vk ,  vi  和  vi+1 (1≤ i < k)之间有直接的一条道路相连.这条道路的长度是k-1.两个城市在同一区域的

51 nod 1495 中国好区间

1495 中国好区间 基准时间限制:0.7 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 阿尔法在玩一个游戏,阿尔法给出了一个长度为n的序列,他认为,一段好的区间,它的长度是>=k的,且该区间的第k大的那个数,一定大于等于T.那么问题来了,阿尔法想知道有多少好的区间. 由于阿尔法的序列长度实在是太大了,无法在规定时间内读入. 他想了一个绝妙的方法. 读入a[0],b,c,p,则a[i]=(a[i-1]*b+c)mod p. 样例解释: a1~a5分别为47,135,247,3