1055 最长等差数列
基准时间限制:2 秒 空间限制:262144 KB 分值: 80 难度:5级算法题
N个不同的正整数,找出由这些数组成的最长的等差数列。
例如:1 3 5 6 8 9 10 12 13 14
等差子数列包括(仅包括两项的不列举)
1 3 5
1 5 9 13
3 6 9 12
3 8 13
5 9 13
6 8 10 12 14
其中6 8 10 12 14最长,长度为5。
Input
第1行:N,N为正整数的数量(3 <= N <= 10000)。 第2 - N+1行:N个正整数。(2<= A[i] <= 10^9)
Output
最长等差数列的长度。
Input示例
10 1 3 5 6 8 9 10 12 13 14
Output示例
5
/* 51 nod 1055 最长等差数列(dp) problem: N个不同的正整数,找出由这些数组成的最长的等差数列 solve: 用dp[i][j]表示最后一位在i,倒数第二位在j的等差数列.然后通过求差值就能得到它的上一个状态 递推下去就能得出结果. 最开始TL,感觉是map的问题. 结果小伙伴帮我加了个判断就剪过了 - - hhh-2016/09/16-20:34:58 */ #pragma comment(linker,"/STACK:124000000,124000000") #include <algorithm> #include <iostream> #include <cstdlib> #include <cstdio> #include <cstring> #include <vector> #include <math.h> #include <queue> #include <set> #include <map> #define lson i<<1 #define rson i<<1|1 #define ll long long #define clr(a,b) memset(a,b,sizeof(a)) #define scanfi(a) scanf("%d",&a) #define scanfs(a) scanf("%s",a) #define scanfl(a) scanf("%I64d",&a) #define scanfd(a) scanf("%lf",&a) #define key_val ch[ch[root][1]][0] #define eps 1e-7 #define inf 0x3f3f3f3f3f3f3f3f using namespace std; const ll mod = 1e9+7; const int maxn = 10010; const double PI = acos(-1.0); template<class T> void read(T&num) { char CH; bool F=false; for(CH=getchar(); CH<‘0‘||CH>‘9‘; F= CH==‘-‘,CH=getchar()); for(num=0; CH>=‘0‘&&CH<=‘9‘; num=num*10+CH-‘0‘,CH=getchar()); F && (num=-num); } int stk[70], tp; template<class T> inline void print(T p) { if(!p) { puts("0"); return; } while(p) stk[++ tp] = p%10, p/=10; while(tp) putchar(stk[tp--] + ‘0‘); putchar(‘\n‘); } short dp[maxn][maxn]; int a[maxn]; map<int,int> mp; int main() { int n; read(n); mp.clear(); for(int i =1; i <= n; i++) read(a[i]); sort(a+1,a+n+1); for(int i = 1;i <= n;i++) mp[a[i]] = i; dp[1][1] = 1; short ans = 0; for(int i = 1; i <= n; i++) { for(int j = i-1; j >= 1; j--) { int t = a[i] - a[j]; if(t*ans>a[n]-a[1])break; int to = a[j]- t; if(to < 0 || mp[to] < 1 || mp[to] >= j) dp[i][j] = 2; else dp[i][j] = dp[j][mp[to]] + 1; ans = max(ans,dp[i][j]); } } print(ans); return 0; }
时间: 2024-11-25 08:35:24