POJ 3169.Layout 最短路

Layout

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 11612   Accepted: 5550

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

题目链接:http://poj.org/problem?id=3169

题意:有n头牛按编号顺序站一排,即每头牛都有一个一维坐标,可以相同。现在有一些牛之间有关系,关系好的a,b必须距离小于等于dl;关系不好的a,b必须距离大于等于dd。求牛1和牛n的最大距离。

思路:最短路问题:<u,v> d[u]+d>=d[v]。

n头牛按编号顺序站一排,则d[i+1]>=d[i],即编号大的牛的坐标大于等于编号小的牛。关系好的牛a,牛b,则d[a]+d>=d[b];关系不好的牛a,牛b,则d[a]+d<=d[b],即d[b]+(-d)>=d[a]。求约束下的最大距离。最短路也可以理解为约束下的最大解。

因为存在负权值,所以有可能存在负权值回路,所以dijkstra算法不能使用,直接使用ford算法。存在负权值回路输出-1,d[n]=inf输出-2,其他情况直接输出d[n]。

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#include<set>
using namespace std;
typedef pair<int,int> P;
typedef long long ll;
const int maxn=1e5+100,inf=0x3f3f3f3f,mod=1e9+7;
const ll INF=1e13+7;
struct edge
{
    int from,to;
    int cost;
};
int cou=0;
edge es[maxn];
vector<edge>G[maxn];
int used[maxn];
priority_queue<P,vector<P>,greater<P> >que;
void addedge(int u,int v,int w)
{
    cou++;
    edge e;
    e.from=u,e.to=v,e.cost=w;
    es[cou].from=u,es[cou].to=v,es[cou].cost=w;
    G[u].push_back(e);
}
int n,ml,md;
int al[maxn],bl[maxn],dl[maxn];
int ad[maxn],bd[maxn],dd[maxn];
int d[maxn];
void ford()
{
    for(int i=1; i<=n; i++) d[i]=inf;
    d[1]=0;
    for(int t=1; t<n; t++)
    {
        for(int i=1; i<n; i++)
            if(d[i+1]<inf) d[i]=min(d[i],d[i+1]);
        for(int i=1; i<=ml; i++)
            if(d[al[i]]<inf) d[bl[i]]=min(d[bl[i]],d[al[i]]+dl[i]);
        for(int i=1; i<=md; i++)
            if(d[bd[i]]<inf)  d[ad[i]]=min(d[ad[i]],d[bd[i]]-dd[i]);
    }
    if(d[1]<0) cout<<-1<<endl;
    else if(d[n]>=inf) cout<<-2<<endl;
    else cout<<d[n]<<endl;
}
int main()
{
    int a,b,d;
    scanf("%d%d%d",&n,&ml,&md);
    for(int i=1; i<n; i++) addedge(i+1,i,0);
    for(int i=1; i<=ml; i++)
        scanf("%d%d%d",&al[i],&bl[i],&dl[i]);
    for(int i=1; i<=md; i++)
        scanf("%d%d%d",&ad[i],&bd[i],&dd[i]);
    ford();
    return 0;
}
/*
4 3 0
1 3 10
2 4 20
2 3 3
*/

最短路

时间: 2024-10-01 04:28:51

POJ 3169.Layout 最短路的相关文章

POJ 3169 Layout (差分约束+SPFA)

Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6832   Accepted: 3292 Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a

POJ 3169 Layout (图论-差分约束)

Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6574   Accepted: 3177 Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a

poj 3169 Layout(差分约束)

Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6549   Accepted: 3168 Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a

POJ 3169 Layout (差分约束系统)

题目地址:POJ 3169 很简单的差分约束..公式很明显.当输入最大值的时候,是a-b<=c,最小值的时候是a-b>=c.然后根据这个式子用最短路求. 代码如下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #include <ctyp

POJ 3169 Layout bellman_ford 最短路

#include <cstdio> #include <iostream> #include <algorithm> #include <queue> #include <stack> #include <cstdlib> #include <cmath> #include <set> #include <map> #include <vector> #include <cstri

POJ 3169 Layout(差分约束啊)

题目链接:http://poj.org/problem?id=3169 Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing

POJ 3169 Layout(差分约束系统)

题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有ML组(u, v, w)的约束关系,表示牛[u]和牛[v]之间的距离必须 <= w.2.有MD组(u, v, w)的约束关系,表示牛[u]和牛[v]之间的距离必须 >= w.问如果这n头无法排成队伍,则输出-1,如果牛[1]和牛[n]的距离可以无限远,则输出-2,否则则输出牛[1]和牛[n]之间的最

POJ 3169 Layout

Layout Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: 316964-bit integer IO format: %lld      Java class name: Main Like everyone else, cows like to stand close to their friends when queuing for feed.  FJ ha

poj 3169 Layout (差分约束+Bellman )

题目链接:http://poj.org/problem?id=3169 题意:输入N, ML, MD, N默示有N个牛按1-N排成一排,ML,默示有ML行,每行输入A, B, D默示A牛和B牛最远间隔为D, MD默示有MD行,每行输入A,B,D默示A牛和B来间隔为D,求满足所有前提的1-N的最大间隔. 比较简单的差分约束,这个周周赛的A题 #include <iostream> #include <cstdlib> #include <cstdio> #include