Counting Offspring
Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Problem Description
You are given a tree, it’s root is p, and the node is numbered from 1 to n. Now define f(i) as the number of nodes whose number is less than i in all the succeeding nodes of node i. Now we need to calculate f(i) for any possible i.
Input
Multiple cases (no more than 10), for each case:
The first line contains two integers n (0<n<=10^5) and p, representing this tree has n nodes, its root is p.
Following n-1 lines, each line has two integers, representing an edge in this tree.
The input terminates with two zeros.
Output
For each test case, output n integer in one line representing f(1), f(2) … f(n), separated by a space.
Sample Input
15 7
7 10
7 1
7 9
7 3
7 4
10 14
14 2
14 13
9 11
9 6
6 5
6 8
3 15
3 12
0 0
Sample Output
0 0 0 0 0 1 6 0 3 1 0 0 0 2 0
Author
bnugong
Source
2011 Multi-University Training Contest 5 - Host by BNU
题意:给你一棵树,你需要求每个子树中序号比其小的个数;
思路:dfs序,处理出每个子树的序列,因为比其小才有贡献,所以从小到大处理即可,用树状数组维护一下;
#include<bits/stdc++.h> using namespace std; #define ll long long #define pi (4*atan(1.0)) #define eps 1e-14 const int N=1e5+10,M=1e6+10,inf=1e9+10; const ll INF=1e18+10,mod=2147493647; int tree[N]; int lowbit(int x) { return x&(-x); } void update(int x,int c) { while(x<N) { tree[x]+=c; x+=lowbit(x); } } int getnum(int x) { int sum=0; while(x) { sum+=tree[x]; x-=lowbit(x); } return sum; } int query(int L,int R) { return getnum(R)-getnum(L-1); } struct is { int v,nex; }edge[N<<1]; int head[N<<1],edg; int in[N],out[N],tot; int n,p; void init() { memset(tree,0,sizeof(tree)); memset(head,-1,sizeof(head)); edg=0; tot=0; } void add(int u,int v) { edg++; edge[edg].v=v; edge[edg].nex=head[u]; head[u]=edg; } void dfs(int u,int fa) { in[u]=++tot; for(int i=head[u];i!=-1;i=edge[i].nex) { int v=edge[i].v; if(v==fa)continue; dfs(v,u); } out[u]=tot; } int main() { while(~scanf("%d%d",&n,&p)) { init(); if(n==0&&p==0)break; for(int i=1;i<n;i++) { int u,v; scanf("%d%d",&u,&v); add(u,v); add(v,u); } dfs(p,-1); for(int i=1;i<=n;i++) { printf("%d%c",query(in[i],out[i]),((i==n)?‘\n‘:‘ ‘)); update(in[i],1); } } return 0; }