最优雅的二分查找

  今天复习以前的代码,突然发现插入排序用的二分查找算法实现得很别扭,于是试试重写一个,没想到相当顺利,几分钟就写好并测试通过了:

static int BinarySearch(int[] array, int value, int start, int end)
{
    if(start == end) return start;
    var middle =  (start + end)/2 + 1;
    if(value >= array[middle])
        return BinarySearch(array, value, middle, end);
    else
        return BinarySearch(array, value, start, middle - 1);
}

  要说明一下,这是用查找升序数组的,结果是小于等于value(被查找值)的最后一个元素的位置。比如说序列{1,3,5,5,7,9},查找5,返回4;查找6,也返回4;查找8,则返回5。

  这样非常方便与其他算法合作,比入插入排序,不容易出现索引溢出错误。下面是非递归版本:

static int BinarySearch2(int[] array, int value, int start, int end)
{
    while (true) {
        if(start == end) return end;
        var middle = (start + end)/2 + 1;
        if(value >= array[middle])
            start = middle;
        else
            end = middle - 1;
    }
}

  据我所知,这恐怕是最精简最优雅的实现了,如果有更好的,欢迎来指导。至于降序数组的情况该怎么写,请注意计算中间值位置middle,以及下一行与中间值的比较方式,你会发现其中的微妙 <( ̄︶ ̄)>

时间: 2024-10-15 04:46:05

最优雅的二分查找的相关文章

关于递归与二分查找技术

简单的说,递归就是函数自己调用自己.在数据结构里面会经常使用递归,因为递归代码比较简洁优雅,易懂. 编写递归程序时主要注意三点 (1)递归总有一个最简单的情况,方法的第一条语句总是包含return的条件语句 (2)递归调用总是去尝试解决一个规模更小的子问题,这样递归才能收敛到最简单的情况.在下面代码中,第四个参数和第三个参数的差值一直在缩小 (3)递归调用的父问题和尝试解决的子问题之间不应该有交集.在如下代码中,两个子问题,各自操作的数组部分是不同的 下面是二分法查找的递归实现和非递归实现: 特

二分查找

递归版(在区间[x, y)中找v的位置) 1 //递归版二分查找 2 int bsearch(int * A, int x, int y, int v) 3 { 4 5 if(v<a[x] || v>a[y-1]) return -1; 6 int m = x + (y-x)/2; //此处能不能用int m = (x+y)/2,需要仔细考虑(暂时想不到原因) 7 if(A[m]==v) return m; 8 else if(A[m]>v) return bsearch(A, x, m

二分查找总结

最近刷leetcode和lintcode,做到二分查找的部分,发现其实这种类型的题目很有规律,题目大致的分为以下几类: 1.最基础的二分查找题目,在一个有序的数组当中查找某个数,如果找到,则返回这个数在数组中的下标,如果没有找到就返回-1或者是它将会被按顺序插入的位置.这种题目继续进阶一下就是在有序数组中查找元素的上下限.继续做可以求两个区间的交集. 2.旋转数组问题,就是将一个有序数组进行旋转,然后在数组中查找某个值,其中分为数组中有重复元素和没有重复元素两种情况. 3.在杨氏矩阵中利用二分查

二分查找JAVA实现

二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好:其缺点是要求待查表为有序表,且插入删除困难.因此,折半查找方法适用于不经常变动而查找频繁的有序列表.首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功:否则利用中间位置记录将表分成前.后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表.重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功. 一.概念 二分查

rwkj 1430 二分查找

#include<iostream>using namespace std;int n,k,a[10000]; int binsearch(int low,int high){ int i,len,s;while(low<high) { len=(high+low)/2; for(s=0,i=0;i<n;i++) s+=a[i]/len; if(s>k) low=len+1; else if(s<k) high=len-1; else return len; }}int

uva:10487 - Closest Sums(二分查找)

题目:10487 - Closest Sums 题目大意:给出一组数据,再给出m个查询的数字.要求找到这组数据里的两个数据相加的和最靠近这个查询的数据,输出那两个数据的和. 解题思路:二分查找,这样找到的话,就输出查询的数值,但是要注意找不到的情况:这里最靠近的值不一定是在找不到的时刻的前一次数据,所以要维护最靠近的要查询数的数值. 代码: #include <stdio.h> #include <algorithm> #include <stdlib.h> using

php二分查找

<?php /** * 二分查找:查找一个值在数组中的位置 *@$val:查找的值 *@$arr:操作的数组,前提是按顺序排列 */ header("content-type:text/html;charset = utf-8"); function biary_search($arr,$val){ $num = count($arr); $low = 0; $high = $num - 1; while($low<$high){ $mid = floor(($high-$

二分查找算法的 JavaScript 实现

二分查找在查找[指定值]在[有序]数据中的[位置]时是一种高效的算法. 以下仅提供 ES5 版本. var arr = [0, 2, 4, 27, 28, 54, 67, 74, 75, 79, 86, 97, 289, 290, 678] function binarySearch(arr, val) { var start = 0, end = arr.length - 1; while (start <= end) { var mid = Math.floor((start + end)

深入浅出数据结构C语言版(12)——从二分查找到二叉树

在很多有关数据结构和算法的书籍或文章中,作者往往是介绍完了什么是树后就直入主题的谈什么是二叉树balabala的.但我今天决定不按这个套路来.我个人觉得,一个东西或者说一种技术存在总该有一定的道理,不是能解决某个问题,就是能改善解决某个问题的效率.如果能够先了解到存在的问题以及已存在的解决办法的不足,那么学习新的知识就更容易接受,也更容易理解. 万幸的是,二叉树的讲解是可以按照上述顺序来进行的.那么,今天在我们讨论二叉树之前,我们先来讨论一种情形.一种操作:假设现在有一个数组,数组中的数据按照某