poj 1114

Brackets Sequence

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 25989   Accepted: 7330   Special Judge

Description

Let us define a regular brackets sequence in the following way:

1. Empty sequence is a regular sequence. 
2. If S is a regular sequence, then (S) and [S] are both regular sequences. 
3. If A and B are regular sequences, then AB is a regular sequence.

For example, all of the following sequences of characters are regular brackets sequences:

(), [], (()), ([]), ()[], ()[()]

And all of the following character sequences are not:

(, [, ), )(, ([)], ([(]

Some sequence of characters ‘(‘, ‘)‘, ‘[‘, and ‘]‘ is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.

Input

The input file contains at most 100 brackets (characters ‘(‘, ‘)‘, ‘[‘ and ‘]‘) that are situated on a single line without any other characters among them.

Output

Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.

Sample Input

([(]

Sample Output

()[()]

Source

Northeastern Europe 2001

状态:dp[i][j]表示 i 到 j 最多的匹配个数
转移方程:dp[i][j] = max(dp[i][j], dp[i][k] + dp[k+1][j]);

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int N = 105;
char str[N];
int dp[N][N];
bool judge(char a, char b)
{
    if(a == ‘(‘ && b == ‘)‘) return true;
    if(a == ‘[‘ && b == ‘]‘) return true;
    return false;
}
int main()
{
    while(gets(str) != NULL)
    {
        if(!strcmp(str, "end")) break;
        int len = strlen(str);
        for(int i = 0; i < len; i++)
        {
            dp[i][i] = 0;
            if(judge(str[i], str[i+1]))
                dp[i][i+1] = 2;
            else
                dp[i][i+1] = 0;
        }
        for(int k = 2; k < len; k++) //枚举子串的长度
        {
            for(int i = 0; i + k < len; i++)
            {
                int r = i + k;
                dp[i][r] = 0;
                if(judge(str[i], str[r]))
                    dp[i][r] = dp[i+1][r-1] + 2;
                for(int j = i; j < r; j++)
                    dp[i][r] = max(dp[i][r], dp[i][j] + dp[j+1][r]);
            }
        }
        printf("%d\n",dp[0][len-1]);
    }
    return 0;
}

  

时间: 2024-10-06 06:40:09

poj 1114的相关文章

poj 1114 完全背包 dp

如果可以每个物品拿多件,则从小到大遍历,否则从大到小遍历. G - Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 1114 Description Before ACM can do anything, a budget must be prepared and the necessary financial su

ACM训练方案-POJ题目分类

ACM训练方案-POJ题目分类 博客分类: 算法 ACM online Judge 中国: 浙江大学(ZJU):http://acm.zju.edu.cn/ 北京大学(PKU):http://acm.pku.edu.cn/JudgeOnline/ 杭州电子科技大学(HDU):http://acm.hdu.edu.cn/ 中国科技大学(USTC):http://acm.ustc.edu.cn/ 北京航天航空大学(BUAA)http://acm.buaa.edu.cn/oj/index.php 南京

转载:poj题目分类(侵删)

转载:from: POJ:http://blog.csdn.net/qq_28236309/article/details/47818407 按照ac的代码长度分类(主要参考最短代码和自己写的代码) 短代码:0.01K–0.50K:中短代码:0.51K–1.00K:中等代码量:1.01K–2.00K:长代码:2.01K以上. 短:1147.1163.1922.2211.2215.2229.2232.2234.2242.2245.2262.2301.2309.2313.2334.2346.2348

poj题库分类

初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推.     (5)构造法.(poj3295)     (6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)二.图算法:     (1)图的深度优先遍历和广度优先遍历.     (2)最短路径算法(dijkstra,bellman-ford,floyd,hea

POJ题目(转)

http://www.cnblogs.com/kuangbin/archive/2011/07/29/2120667.html 初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推.     (5)构造法.(poj3295)     (6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)二.图算法:     (

Poj 题目分类

初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推.     (5)构造法.(poj3295)     (6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)二.图算法:     (1)图的深度优先遍历和广度优先遍历.     (2)最短路径算法(dijkstra,bellman-ford,floyd,hea

POJ题目分类(转)

初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推.     (5)构造法.(poj3295)     (6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)二.图算法:     (1)图的深度优先遍历和广度优先遍历.     (2)最短路径算法(dijkstra,bellman-ford,floyd,hea

北大POJ题库使用指南

原文地址:北大POJ题库使用指南 北大ACM题分类主流算法: 1.搜索 //回溯 2.DP(动态规划)//记忆化搜索 3.贪心 4.图论 //最短路径.最小生成树.网络流 5.数论 //组合数学(排列组合).递推关系.质因数法 6.计算几何 //凸壳.同等安置矩形的并的面积与周长.凸包计算问题 8.模拟 9.数据结构 //并查集.堆.树形结构 10.博弈论 11.CD有正气法题目分类: 1. 排序 1423, 1694, 1723, 1727, 1763, 1788, 1828, 1838, 1

POJ - 3186 Treats for the Cows (区间DP)

题目链接:http://poj.org/problem?id=3186 题意:给定一组序列,取n次,每次可以取序列最前面的数或最后面的数,第n次出来就乘n,然后求和的最大值. 题解:用dp[i][j]表示i~j区间和的最大值,然后根据这个状态可以从删前和删后转移过来,推出状态转移方程: dp[i][j]=max(dp[i+1][j]+value[i]*k,dp[i][j-1]+value[j]*k) 1 #include <iostream> 2 #include <algorithm&