题目链接:hdu 5291 Candy Distribution
每次先计算出dp[0],然后根据dp[0]的数值可以用o(1)的复杂度算出dp[1],以此类推。总体复杂度为o(200 * 80000),可以接受。
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int maxn = 80000; const int maxm = 205; const int mod = 1e9+7; #define coe(x) ((x)/2+1) int N, M, A[maxm], dp[2][maxn + 5]; int query(int x, int now) { if (x < 0 || x > 2*M) return 0; return dp[now][x]; } int solve () { int now = 0, pre = 1; memset(dp[now], 0, sizeof(dp[now])); dp[now][M] = 1; for (int i = 0; i < N; i++) { now = pre; pre = pre^1; int sumL = 0, sumR = 0, addL = 0, addR = 0; for (int k = -A[i]; k <= A[i]; k++) { int tmp = query(k, pre); dp[now][0] = 0; dp[now][0] = (dp[now][0] + 1LL * tmp * coe(A[i]-(k < 0 ? -k : k)) % mod) % mod; if (k <= 0) { sumL = (sumL + tmp) % mod; if ((k&1) == 0) addL = (addL + tmp) % mod; } if (k >= 0) { sumR = (sumR + tmp) % mod; if ((k&1) == 0) addR = (addR + tmp) % mod; } } if (A[i]&1) { addR = (sumR - addR + mod) % mod; addL = (sumL - addL + mod) % mod; } for (int k = 1; k <= M*2; k++) { sumR = (sumR + query(A[i] + k, pre)) % mod; addR = (sumR + mod - addR) % mod; sumR = (sumR + mod - query(k-1, pre)) % mod; dp[now][k] = ((dp[now][k-1] + addR - addL) % mod + mod) % mod; sumL = (sumL + query(k, pre)) % mod; addL = (sumL + mod - addL) % mod; sumL = (sumL + mod - query(k - A[i] - 1, pre)) % mod; } } return dp[now][M]; } int main () { int cas; scanf("%d", &cas); while (cas--) { scanf("%d", &N); M = 0; for (int i = 0; i < N; i++) { scanf("%d", &A[i]); M += A[i]; } printf("%d\n", solve()); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
时间: 2024-10-12 23:58:55