复杂度分析-算法学习的精髓

  

J我们知道学习数据结构与算法主要是解决一个「快」和「省」的问题,如何让代码执行更快、如何更节省空间。那么如何来考量你的代码的执行效率呢,我们总要有一个标准,这就是我今天所讲的复杂度分析,不夸张的说,掌握好复杂度分析,数据结构与算法你就掌握了一半,所有的算法都逃不出复杂度分析的范畴。

  复杂度分析包括时间复杂度和空间复杂度。

  如何考量我们代码的执行效率,有的人可能会说我在计算机上跑一下不得了,简单便捷,没错,这样确实可以。但是这种方法太依赖硬件环境了,你在不同的机器上跑的时间肯定是不一样的。所以,我们需要一种不依靠测试环境,不需要测试数据的方法来估计算法的执行效率的方法。大 O 时间复杂度上场了。

  大 O 复杂度表示法

  直接上代码,我会带你一起来估算代码的运行时间,在实战中掌握大 O 复杂度。

  int sum(int n){int sum = 0;int i = 1;for(; i=n; i++)

  {

  sum = sum + i;

  }return sum;

  }

  上面是一个计算从 1 + 2 + 3 + ··· + n 的求和,我们假设每行代码的执行时间都是一个 unit_time。我们可以看到第 3、4 行的代码都运行了 1 个 unit_time,第 6、8 行都运行了 n 个 unit_time。所以这段代码运行时间为 T(n) = (2n+2) * unit_time。即 T(n) = O(2n+2), 这就是大 O 时间复杂度表示法。当 n 趋向于无穷大时,记为 T(n) = O(n)。

  大 O 时间复杂度表示法实际上并不表示代码真正的执行时间,大家也看到了,T(n)才是代码真正的执行时间,大 O 时间复杂度是表示代码执行时间随数据规模增长的变化趋势。

  算法的时间复杂度采用这种数量级的形式表示后,将给分析算法的时间复杂度带来很大的方便。即对一个算法,只需分析影响该算法时间复杂度的主要部分即可,而无需对该算法的每一个语句都进行纤细的分析。

  时间复杂度分析

  那么问题来了,给我们一段代码,我们怎么分析它的时间复杂度呢?我有二个实操的方法可以分享给你。

  1. 关注执行次数最多的一段代码

  在上面那个例子中,执行次数最多的是第 6、8 行,所以总的时间复杂度就是 O(n)。

  2. 关注量级最大的那段代码

  看下面代码,你可以先试着分析一下,再往下翻。

  int sum(int n){int sum_1 = 0;int x = 1;for(; p 10; p++) {

  sum_1 += p;

  }int sum_2 = 0;int q = 1;for(; q n; q++) {

  sum_2 += q;

  }int sum_3 = 0;int i = 1;for(; i=n; i++) { int j = 1; for(; j=n; j++) {

  sum_3 = sum_3 + i *j;

  }

  } return sum_1 + sum_2+ sum_3;

  }

  第一段执行了 10 次,这是一个常量的执行时间,跟 n 的规模无关,就算它执行一百次、一千次,它也是常量级的执行时间。所以为 O(1)。

  第二段和第三段代码分别为 O(n)、O(n2),这对你应该不是很难。所以我们只关注量级最大的代码的时间复杂度,即 O(n2)。

  大 O 表示法有乘法法则和加法法则,非常好理解,乘法法则实际上就是嵌套循环。相信你已经懂了时间复杂度的大 O 分析法了。

  下面我介绍一些常见的时间复杂度分析实例。

  (敲黑板,划重点了,拿小本本记下)

  1. O(1)

  O(1) 常量级时间复杂度

  int x = 1;

  int y = 2;int sum = x + y;

  1. O(logn)

  i = 1;while( i = n)

  {

  i = i * 2;

  }

  代码的执行次数为 x = log2n,即求解方程 2x = n。

?

原文地址:https://www.cnblogs.com/qfjavabd/p/10396664.html

时间: 2024-10-21 05:26:12

复杂度分析-算法学习的精髓的相关文章

01 | 复杂度分析(上):如何分析、统计算法的执行效率和资源消耗?

我们都知道,数据结构和算法本身解决的是“快”和“省”的问题,即如何让代码运行得更快,如何让代码更省存储空间.所以,执行效率是算法一个非常重要的考量指标.那如何来衡量你编写的算法代码的执行效率呢?这里就要用到我们今天要讲的内容:时间.空间复杂度分析.其实,只要讲到数据结构与算法,就一定离不开时间.空间复杂度分析. 而且,我个人认为,复杂度分析是整个算法学习的精髓,只要掌握了它,数据结构和算法的内容基本上就掌握了一半.其实,只要讲到数据结构与算法,就一定离不开时间.空间复杂度分析. 复杂度分析实在太

算法录 之 复杂度分析。

一个算法的复杂度可以说也就是一个算法的效率,一般来说分为时间复杂度和空间复杂度... 注意接下来说的均是比较YY的,适用与ACM等不需严格分析只需要大致范围的地方,至于严格的算法复杂度分析的那些数学证明,主定理什么的在<算法导论>这本书上有十分详细的讲解,网上应该也会有人写过,这里就不多说了(其实,是我不会而已o(╯□╰)o...). — 到底啥是复杂度呢?先来个栗子. 小明有10个苹果,有一天他饿了,然后准备吃掉一个苹果,但是小明有中二病,他要吃里面重量最大的那个,于是...他需要一个找到那

复杂度分析(上):如何分析、统计算法的执行效率和资源消耗

复杂度分析是什么? 复杂度分析就是分析执行一个给定算法需要消耗的计算资源数量(例如计算时间,存储器使用等)的过程. 为什么要学习复杂度分析? 没有复杂度分析怎么得到算法执行的时间和占用的内存大小 把代码运行一遍,通过统计.监控,就能得到算法执行的时间和占用的内存大小. 该方法的缺点在于: 1.测试结果非常依赖测试环境 拿同样一段代码,在 Intel Core i9 处理器上运行的速度肯定要比 Intel Core i3 快得多.同一段代码,在不同机器上运行,也可能会有截然相反的结果. 2.测试结

学好数据结构和算法 —— 复杂度分析

复杂度也称为渐进复杂度,包括渐进时间复杂度和渐进空间复杂度,描述算法随数据规模变化而逐渐变化的趋势.复杂度分析是评估算法好坏的基础理论方法,所以掌握好复杂度分析方法是很有必要的. 时间复杂度 首先,学习数据结构是为了解决“快”和“省”的问题,那么如何去评估算法的速度快和省空间呢?这就需要掌握时间和空间复杂度分析.同一段代码运行在不同环境.不同配置机器.处理不同量级数据…效率肯定不会相同.时间复杂度和空间复杂度是不运行代码,从理论上粗略估计算法执行效率的方法.时间复杂度一般用O来表示,如下例子:计

数据结构与算法系列二(复杂度分析)

1.引子 1.1.为什么要学习数据结构与算法? 有人说,数据结构与算法,计算机网络,与操作系统都一样,脱离日常开发,除了面试这辈子可能都用不到呀! 有人说,我是做业务开发的,只要熟练API,熟练框架,熟练各种中间件,写的代码不也能“飞”起来吗? 于是问题来了:为什么还要学习数据结构与算法呢? #理由一: 面试的时候,千万不要被数据结构与算法拖了后腿 #理由二: 你真的愿意做一辈子CRUD Boy吗 #理由三: 不想写出开源框架,中间件的工程师,不是好厨子 1.2.如何系统化学习数据结构与算法?

算法9-4:最大流算法复杂度分析

前面一节介绍了Ford-Fulkerson算法.那么这个算法是否一定能够在有限步骤内结束?要多少步骤呢? 这个问题的答案是,该算法确实能够在有限步骤之内结束,但是至于需要多少步骤,就要仔细分析. 为了分析问题,需要假定图中所有边的容量都是整数.但是有个严重的问题,比如下图中,如果使用Ford-Fulkerson算法,需要迭代200次才能结束. 首先将所有边的容量都初始化为0. 第一次迭代和第二次迭代之后,两条边各增加了1. 到最后200次迭代之后整个算法才结束. 这还不算最坏的情况.因为整数最多

比较排序算法及复杂度分析

比较排序算法分类 比较排序(Comparison Sort)通过对数组中的元素进行比较来实现排序. 比较排序算法(Comparison Sorts) Category Name Best Average Worst Memory Stability  插入排序  (Insertion Sorts) 插入排序 (Insertion Sort) n n2 n2 1 Stable 希尔排序 (Shell Sort) n n log2 n n log2 n 1 Not Stable  交换排序 (Exc

转 算法复杂度分析

转自 http://www.cnblogs.com/gaochundong/p/complexity_of_algorithms.html 为什么要进行算法分析? 预测算法所需的资源 计算时间(CPU 消耗) 内存空间(RAM 消耗) 通信时间(带宽消耗) 预测算法的运行时间 在给定输入规模时,所执行的基本操作数量. 或者称为算法复杂度(Algorithm Complexity) 如何衡量算法复杂度? 内存(Memory) 时间(Time) 指令的数量(Number of Steps) 特定操作

几种简单的求素数算法的复杂度分析

素数的算法有很多种,现在主要讲两种算法及其改进版本的复杂度分析,解释性能提升的幅度.现以求100000内素数为例,两种算法分别是: 1.基础思路是去掉偶数,包括取模的范围,代码如下: print(2) for i in range(3,100000,2): for a in range(3,int(i*0.5)+1,2): if i%a == 0: break else: print(i,end = ' ')此两层循环的算法的复杂度为0.5n((n**0.5+1)/2) 2.应用一个素数定理:大