论文阅读 | FPN:Feature Pyramid Networks for Object Detection

论文地址:https://arxiv.org/pdf/1612.03144v2.pdf

代码地址:https://github.com/unsky/FPN

概述

FPN是FAIR发表在CVPR 2017上的一篇文章,采用特征金字塔的方法进行目标检测。文中利用深层卷积网络固有的多尺度金字塔层次结构,高效地构造特征金字塔。文章提出了FPN——一种具有横向连接的自顶向下的结构,来构建所有尺度上的高级语义特征映射。

网络结构

下图展示了几种不同的利用特征的方式:(a)为图像金字塔,就是对图像resize成不同大小,然后在不同大小的图像上生成feature map,在不同大小的feature map上分别进行预测,这种方法很耗时间;(b)是只在最后一层的feature map上进行预测,如SPPNet、Faster RCNN等等;(c)是多尺度的特征融合,也就是利用网络的不同层的feature map做预测,融合多个尺度特征层的预测结果,代表算法是SSD。(c)对feature map的利用仍然不够充分,注意到低层的目标位置信息比较准确,而高层的特征语义信息很丰富,进行多尺度特征的融合,每层对融合后的特征做独立预测的效果更好,也就是图(d)。

实际上,采用自顶向下以及跳跃连接结构的网络并不少,不过他们的目标是产生一个单一的、高分辨率的高层特征图,然后对其进行预测,如图2上半部分所示。而作者提出的网络则是在每一层中独立进行预测(图2下半部分)。

文中使用ResNet作为基础网络,特征金字塔的构造包括一个自底向上的路径,一个自顶向下的路径,以及横向连接,如图3所示。

自底向上的过程实际上就是前馈神经网络的计算过程。以ResNet为例,对每个阶段提取最后一个residual block的输出(conv2,conv3,conv4和conv5)来构成特征金字塔,相对于输入图像,步长分别为4、8、16、32像素(不使用conv1是因为它占内存太大)。自顶向下的过程通过上采样完成,也就是把高层的feature map通过最近邻上采样使其尺寸*2。横向连接就是将上采样的高层feature map和自底向上产生的feature map(通过1*1的卷积操作来减少feature map的通道数)融合(元素加)。通过上述过程不断迭代产生最好的feature map,即C2。在每个合并的map上附加一个3*3卷积产生最终特征映射,以降低上采样的混叠效应。

应用

1、FPN用于RPN

通过用FPN代替单尺度特征映射来改进RPN,也就是用FPN生成不同尺度的特征然后融合作为RPN的输入。在特征金字塔的每层都附加了一个相同设计的network head(3*3 conv和两个兄弟1*1卷积),为每一层设计了单尺度的anchors(P2、P3、P4、P5、P6的anchor尺度分别为32*32、64*64、128*128、256*256、512*512),而且anchors使用多种宽高比(1:2、1:1和2:1)。整个特征金字塔一共有15种anchor。

2、FPN用于Fast R-CNN

为了将FPN用于Fast R-CNN,需要给金字塔的各层分配不同尺度的RoIs。第Pk层分配策略如下:

其中,224是ImageNet预训练的标准尺寸,k0是w*h=224^2的RoI应该映射到的目标层。文中k0设置为4。

实验结果

作者分别在Fast R-CNN和Faster R-CNN上做了对比实验,结果如下表2和表3所示,可以看出FPN的效果比单尺度特征更好,而且在小目标的检测中具有良好的表现。

在COCO比赛上的检测结果:

此外,将FPN用于实例分割也具有很好的效果,其结构及结果对比如下:

原文地址:https://www.cnblogs.com/cieusy/p/10333991.html

时间: 2024-08-30 07:57:31

论文阅读 | FPN:Feature Pyramid Networks for Object Detection的相关文章

论文: Feature Pyramid Networks for Object Detection

论文阅读: Feature Pyramid Networks for Object Detection Feature Pyramid 是提取图像特征领域的很重要的概念.在深度学习领域没有被提及是因为目前深度学习仍然受到计算量的限制. 本论文根据不同的feature maps给出了 Feature Pyramid Network,因为 Featrue Pyramid的尺度不变性,可以有效的解决Object Detection 中的目标物体不一致大小的问题. 熟悉图像处理的都知道 sift 算法,

【Network Architecture】Feature Pyramid Networks for Object Detection(FPN)论文解析(转)

目录 0. 前言 1. 博客一 2.. 博客二 0. 前言 ??这篇论文提出了一种新的特征融合方式来解决多尺度问题, 感觉挺有创新性的, 如果需要与其他网络进行拼接,还是需要再回到原文看一下细节.这里转了两篇比较好的博客作为备忘. 1. 博客一 这篇论文是CVPR2017年的文章,采用特征金字塔做目标检测,有许多亮点,特来分享. 论文:feature pyramid networks for object detection 论文链接:https://arxiv.org/abs/1612.031

Parallel Feature Pyramid Network for Object Detection

ECCV2018 总结: 文章借鉴了SPP的思想并通过MSCA(multi-scale context aggregation)模块进行特征融合从而提出PFPNet(Parallel Feature Pyramid Network)算法来提升目标检测的效果. 1.使用spp模块通过扩大网络宽度而不是增加深度来生成金字塔形特征图 2.提出msca模块,有效地结合了大不相同规模的上下文信息 3.效果好:82.3% (Pascal VOC 2007), 80.3% (PASCAL VOC 2012),

【CV论文阅读】YOLO:Unified, Real-Time Object Detection

YOLO的一大特点就是快,在处理上可以达到完全的实时.原因在于它整个检测方法非常的简洁,使用回归的方法,直接在原图上进行目标检测与定位. 多任务检测: 网络把目标检测与定位统一到一个深度网络中,而且可以同时在原图上检测多个物体.步骤总结如下: (1)把图片分割成S*S个方格,假如某个物体的中点落在其中一个方格,那么这个方格就对这个物体负责.这里说的物体的中点应该是指ground truth box中的物体的中心. (2)对于每个格子,预测B个bounding box以及相应的confidence

FPN(feature pyramid networks)算法讲解

FPN(feature pyramid networks)算法讲解 https://blog.csdn.net/u014380165/article/details/72890275 这篇论文是CVPR2017年的文章,采用特征金字塔做目标检测,有许多亮点,特来分享. 论文:feature pyramid networks for object detection 论文链接:https://arxiv.org/abs/1612.03144 论文概述: 作者提出的多尺度的object detect

【论文笔记】Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

写在前面: 我看的paper大多为Computer Vision.Deep Learning相关的paper,现在基本也处于入门阶段,一些理解可能不太正确.说到底,小女子才疏学浅,如果有错误及理解不透彻的地方,欢迎各位大神批评指正! E-mail:[email protected]. ------------------------------------------------ <Faster R-CNN: Towards Real-Time Object Detection with Reg

Rich feature hierarchies for accurate object detection and semantic segmentation

一.主要思想 本文的主要思想首先采用Selective Search for Object Recognition论文的方法对每张图像分块得到多个个Region proposals,然后对每个Region proposal提取CNN特征,在采用线性svm进行分类,在VOC2012上面达到了 53.3%的mAP. 二.Object detection with R-CNN 1.模型框架 (1)获取Region proposals 采用Selective Search for Object Reco

目标检测论文阅读:Deformable Convolutional Networks

https://blog.csdn.net/qq_21949357/article/details/80538255 这篇论文其实读起来还是比较难懂的,主要是细节部分很需要推敲,尤其是deformable的卷积如何实现的一步上,在写这篇博客之前,我也查阅了很多其他人的分享或者去github找代码,当然也不敢说完全了解了这种特殊的卷积--仅仅做一点自己的阅读心得与体会吧.这是一篇很有意义的工作,但是和深度学习很多论文一样,在读完之后内心也不免有着种种疑云. Deformable Convoluti

论文笔记:Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks

文章: http://arxiv.org/abs/1506.01497 源码:坐等.... 目录: Region Proposal Networks Translation-Invariant Anchors A Loss Function for Learning Region Proposals Optimization Sharing Convolutional Features for Region Proposal and Object Detection Implementation