COMS 4771 HW0 matlab a calibration assignmen

COMS 4771 HW0
Due: Sun Jan 27, 2019 at 11:59pm
This is a calibration assignment (HW0). The goal of this assignment is for you to recall basic
concepts, and get familiarized with the homework submission system (Gradescope). Everyone enrolled
or on the waitlist intending to enroll must submit this assignment by the due date. Anyone
who does not submit HW0 by the due date will get a score of zero. The score received on this assignment
will not count towards your final grade in this course, but will be used to make a decision
to who will be approved to enrolled. You must show your work to receive full credit. You should
cite all resources (including online material, books, articles, help taken from specific individuals,
etc.) you used to complete your work.
This homework assignment is to be done individually. All homeworks (including this one)
should be typesetted properly in pdf format. Handwritten solutions will not be accepted. You must
include your name and UNI in your homework submission.
0.1 [Notation]
Pr[·] denotes the probability (of an event).
E[·] denotes the expected value (of a random variable).
var[·] denotes the variance (of a random variable).
cov[·, ·] denotes the covariance (between a pair of random variables).
1[·] denotes the indicator function. That is, 1[A] := (
1 if A is true
0 otherwise .
⊥ denotes independence. That is, A⊥B means A and B are independent.
T denotes the transpose operator.
k · k denotes the Euclidean norm.
1.1 [Probability and Statistics]
Let X and Y be jointly distributed normal random variables, where
E[X] = 1, E[Y ] = 1,
var[X] = 1, var[Y ] = 9,
cov[X, Y ] = 2.
In other words, the joint distribution of the pair (X, Y ) ~ N(μ, Σ), where
What is the distribution of the random variable Z := X 2Y
1
1.2 Show that:
(i) For any (measurable) event A, we have Pr[A] = E[1[A]].
(ii) For any non-negative random variable X, and any c > 0
Pr[X ≥ c] ≤E[X]c.
(Hint: compare the output of the function 1[X > c] with the outcome of X.)
1.3 Let X ∈ {1, +1} denote the outcome of an toss of an unbiased coin. (That is, Pr[X =
+1] = Pr[X = 1] = 1/2.) Say the coin in tossed 1000 times independently, and the
correspoinding outcomes are denoted by X1, . . . , X1000.
Give a good estimate of the chance that the average of the 1000 tosses exceeds the value 10?
That is, give the best possible value of α, such that
Pr[(X1 + . . . + X1000) > 10] < α.
(Hint: use the result from q1.2.)
1.4 Suppose x is a random vector drawn from a d-dimensional multivariate Gassian distribution
with mean 0 and covariance Σ. Define y := Qx + v, for a known (invertible) d × d matrix Q,
and a d × 1 vector v. What is the distribution of y?
1.5 For any three random variables A, B and C prove or disprove the following statements:
(i) (A⊥B)|C =A⊥B.
(ii) A⊥B = (A⊥B)|C.
2.1 [Linear Algebra] Let v be a vector in R d
. Consider the set Sv := {x ∈ R d
| x · v = 0}.
What is the dimension of Sv? (Justify your answer).
2.2 Let Sv be as defined in q2.1, and w be another vector in R d
. What is the Euclidean distance
between w and the closest point to w in Sv? That is, find
min
x∈Sv
kw xk.
(for those who are curious, this minimum exists and you don’t need to prove its existance.)
2.3 Show that for any symmetric positive semi-definite d × d real matrix A, there exists real
vectors v1, . . . , vd such that
(Hint: consider the eigendecomposition of A)
2
3.1 [Calculus and optimization] For a given vector b ∈ R
d
, Consider the function Fb : (R
d×d × Rd) → R
defined as:
Fb : (A, v) 7→ v
TAv + b
(i) What is Fb/A
(ii) What is Fb/v
(iii) For a fixed invertible and symmetric matrix A, what value of v minimizes the function
Fb?
(iv) For a fixed invertible and symmetric matrix A, what value of v such that kvk = 1
minimizes the function Fb?
4.1 [Programming practice] Download the Matlab data file hw0data.mat (instructions on Piazza
on where to download the file). Write a script that does the following.
Special note for those who are not using Matlab: Python users can use scipy to read in
the mat file, R users can use R.matlab package to read in the mat file, Julia users can use
JuliaIO/MAT.jl. Octave users should be able to load the file directly.
(i) Load the data in hw0data.mat. It contains one matrix variable is called M.
(ii) Print the dimensions of M.
(iii) Print the 4th row and 5th column entry of M.
(iv) Print the mean value of the 5th column of M.
(v) Compute the histogram of the 4th row of M and show the figure.
(vi) Compute and print the top three eigenvalues of the matrix MTM.
4.2 We will try to understand the geometry of eigenvectors and eigenvalues of a matrix via experimentation.
Let L =
"
5/4 3/2
3/2 5 #
be a 2 × 2 matrix. To understand eigenvectors and
eigenvalues, we will study the action of L on random vectors and relate it to eigenvectors and
eigenvalues. Write a script that does the following.
(i) Create the 2 × 2 matrix L (as defined above).
(ii) Create 500 random, unit length, two-dimensional vectors. (Hint: to generate a random
d-dimensional unit length vector, draw d independent samples from the Gaussian distribution
N(0, 1) and assign each sample as one component of the vector. Now, normalize
the vector to have length one.) Let R be the set of these 500 random 2-dimensional unit
vectors.
(iii) For each vector r ∈ R, compute how the matrix L “distorts” r, that is, compute r := Lr.
(iv) Compute the eigenvalues of L. Let λmax and λmin denote the maximum and the minimum
eigenvalue respectively.
(v) For each distorted vector r, compute the length krk.
(vi) Create a histogram of values of k?rk (use 50 bins) and compare it to λmax and λmin.
(vii) What relationship can you infer between k?rk, λmax and λmin?
3
(viii) Now, compute the eigenvectors of L. Let vmax denote the eigenvector corresponding to
the maximum eigenvalue λmax.
(ix) Make a two-dimensional plot of all the distorted vectors r (in black color) and the eigenvector
Lvmax (in red color). (make sure that the x- and the y-axis are displayed at the
same scale).
(x) What can you infer about the vmax from studying this plot?

因为专业,所以值得信赖。如有需要,请加QQ:99515681 或邮箱:[email protected]

微信:codinghelp

原文地址:https://www.cnblogs.com/cccccchelper/p/10335486.html

时间: 2024-11-09 02:55:07

COMS 4771 HW0 matlab a calibration assignmen的相关文章

OpenCV和Matlab 通过XML传递数据

因为现在下到的数据集大部分都使用了Matlab的Calibration toolbox 进行标定,其结构大部分是.mat结构的,所以它和opencv中数据传递需要一个中间过程,网上也有直接调用matlab的dll的方法,但是中间件方法必然会受到版本限制,所以我最后还是选择了使用xml来作为中间文件传递数据. --------------1.calibration toolbox原始标定的.m数据--------------   http://ishare.iask.sina.com.cn/f/6

matlab、opencv、halcon双目标定汇总

相机的标定对于测距和重建还是很重要的,特把用过的工具和方法进行一次汇总,以便查阅.分析和讨论(本人扣扣1256635840) ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— 1.MATLAB camera calib

(转)Awesome Courses

Awesome Courses  Introduction There is a lot of hidden treasure lying within university pages scattered across the internet. This list is an attempt to bring to light those awesome courses which make their high-quality material i.e. assignments, lect

matlab分布式平台

一.Matlab R2014b安装教程 1,下载Matlab R2014b ISO格式安装包 2,以winrar格式解压缩ISO文件,出现下图所示的文件列表 3,进入Matlab2014b crack.rar中jar文件,将其中的ValidatedFikImpl.class和InstallerBuilderImpl.class文件复制替换到 上述解压缩文件夹内的路径 \java\jar\install.jar压缩文件的\com\mathworks\install\目录下: 直接向Winrar所打

利用matlab摄像机标定

(1)输入图像 "Image names"键 Matlab的图形窗口显示出20幅靶标图像 (2) 提取角点 "Extract grid corners"键. 输入要进行角点提取的靶标图像的编号并回车 分别在"wintx ([] = 5) ="和"winty ([] = 5) ="输入行中输入角点提取区域的窗口半宽m和半高n.显示角点提取区域的窗口尺寸(2n+1)x(2m+1),例如,选择缺省时角点提取区域的窗口尺寸为11x11

MatLab 组件大全

MATLAB                                      矩阵实验室       7.0.1 Simulink                                      仿真 6.1 Aerospace   Blockset                   太空模块 1.6.1 Bioinformatics Toolbox                生物信息工具箱 1.1.1 CDMA Reference Blockset          

matlab toolboxes 大全

MATLAB Toolboxes top (Top) Audio - Astronomy - BiomedicalInformatics - Chemometrics  - Chaos - Chemistry - Coding - Control - Communications - Engineering - Data Mining - Excel - FEM - Fuzzy - Finance - GAs - Graph - Graphics - Images - ICA - Kernel 

相机标定简介与MatLab相机标定工具箱的使用(未涉及原理公式推导)

相机标定 一.相机标定的目的 确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,建立摄像机成像的几何模型,这些几何模型参数就是摄像机参数. 二.通用摄像机模型 世界坐标系.摄像机坐标系和像平面坐标系都不重合.同时考虑两个因素 : (1)摄像机镜头的畸变误差,像平面上的成像位置与线性变换公式计算的透视变换投影结果有偏差: (2)计算机中图像坐标单位是存储器中离散像素的个数,所以像平面上的连续坐标还需取整转换. 摄像机参数 l  摄像机内部参数 (Intrinsic Paramet

相机标定 matlab opencv ROS三种方法标定步骤(1)

一 .理解摄像机模型,网上有很多讲解的十分详细,在这里我只是记录我的整合出来的资料和我的部分理解 计算机视觉领域中常见的三个坐标系:图像坐标系,相机坐标系,世界坐标系,实际上就是要用矩阵来表示各个坐标系下的转换 首先在图像坐标系下与相机坐标系的关系 可得出   Xcam=x/dx+x0,    Ycam=y/dy+y0  表示为矩阵形式 Xcam           1/dx   0      x0          x Ycam      =    0     1/dy   y0    *