UVAlive-7040 color(组合数学,二项式反演)

链接:vjudge

题目大意:有一排方格共 $n$ 个,现在有 $m$ 种颜色,要给这些方格染色,要求相邻两个格子的颜色不能相同。现在问恰好用了 $k$ 种颜色的合法方案数。答案对 $10^9+7$ 取模。$T$ 组数据。

$1\le T\le 300,1\le n,m\le 10^9,1\le k\le 10^6,k\le \min(n,m)$。大多数数据中 $k$ 很小。(smg啊……)



经典的二项式反演例题。

我们令 $f(x)$ 为一共有 $x$ 种颜色,恰好用了 $x$ 种颜色的方案数。

答案就是 ${m\choose k}f(k)$。因为任意选 $k$ 种颜色方案数是一样的。

这……似乎不太好算?

我们再令 $g(x)$ 为一共有 $x$ 种颜色,用了至多 $x$ 种颜色的方案数。

这个就不难算了。第一个格子可以随便填,就是 $x$ 种。后面的格子只要不和上一个颜色相同就行了,就是 $x-1$ 种。

乘法原理一下:$g(x)=x(x-1)^{n-1}$。$x=0$ 时这个式子是 $0$。

但是要注意,$x=n=1$ 时我们这样计算是 $0$,但是实际上是 $1$。为什么?$1\times 0^0$。所以我们要把 $0^0$ 看做 $1$,或者直接特判掉。

(但是不特判也能过,数据太水,这多组数据没用吧)

我们来想一想 $f$ 和 $g$ 有什么关系。很容易发现:$g(x)=\sum\limits^x_{i=0}{x\choose i}f(i)$。因为 $x$ 种颜色中随便选 $i$ 种都可以。

标准二项式反演形式。$f(x)=\sum\limits^x_{i=0}(-1)^{x-i}{x\choose i}g(i)$。

因为 $x\le 10^6$,所以阶乘和逆元都可以预处理,组合数就可以 $O(1)$ 了。此时 $f(x)$ 就可以 $O(x\log n)$ 算了。

现在问题就是算 $m\choose k$ 了。$m$ 达到了惊人的 $10^9$,模数又是个大数……怎么办?

我们发现 $m\choose k$ 可以表示成一种不常用的形式:$\frac{m(m-1)(m-2)...(m-k+1)}{k!}$。

此时分母是预处理过的,分子可以 $O(k)$ 算。这就完事了。

总时间复杂度 $O(Tk\log n)$。因为大多数数据中 $k$ 很小,所以可以跑过。

……这数据范围我给满分……

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1000100,mod=1000000007;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
    char ch=getchar();int x=0,f=0;
    while(ch<‘0‘ || ch>‘9‘) f|=ch==‘-‘,ch=getchar();
    while(ch>=‘0‘ && ch<=‘9‘) x=x*10+ch-‘0‘,ch=getchar();
    return f?-x:x;
}
int t,n,m,k,fac[maxn],inv[maxn],invfac[maxn];
void init(){    //预处理阶乘,逆元,阶乘的逆元
    fac[0]=fac[1]=inv[1]=invfac[0]=invfac[1]=1;
    FOR(i,2,1000000){
        fac[i]=1ll*fac[i-1]*i%mod;
        inv[i]=mod-1ll*(mod/i)*inv[mod%i]%mod;
        invfac[i]=1ll*invfac[i-1]*inv[i]%mod;
    }
}
int C(int n,int m){
    if(n<=1000000) return 1ll*fac[n]*invfac[m]%mod*invfac[n-m]%mod;    //n,m很小,可以直接算
    int ans=invfac[m];    //分母是m的阶乘
    ROF(i,n,n-m+1) ans=1ll*ans*i%mod;    //暴力乘上分子
    return ans;
}
int qpow(int a,int b){    //快速幂
    int ans=1;
    for(;b;b>>=1,a=1ll*a*a%mod) if(b&1) ans=1ll*ans*a%mod;
    return ans;
}
int g(int x){
    if(x==1 && n==1) return 1;    //特判掉x=n=1
    return 1ll*x*qpow(x-1,n-1)%mod;
}
int f(int x){
    int ans=0;
    FOR(i,0,x){
        int v=1ll*C(x,i)*g(i)%mod;
        if((x-i)&1) ans=(ans-v+mod)%mod;    //(-1)^(x-i)
        else ans=(ans+v)%mod;
    }
    return ans;
}
int main(){
    init();
    t=read();
    FOR(tt,1,t){
        n=read();m=read();k=read();
        printf("Case #%d: %d\n",tt,int(1ll*C(m,k)*f(k)%mod));    //记得乘上C(m,k)
    }
}

二项式反演

原文地址:https://www.cnblogs.com/1000Suns/p/10353695.html

时间: 2024-10-11 12:11:13

UVAlive-7040 color(组合数学,二项式反演)的相关文章

2014ACM/ICPC亚洲区西安站现场赛 F color(二项式反演)

题意:小球排成一排,从m种颜色中选取k种颜色给n个球上色,要求相邻的球的颜色不同,求可行的方案数,答案模1e9+7.T组数据,1<= n, m <= 1e9, 1 <= k <= 1e6, k <= n, m 分析: a(k)表示用不超过k种颜色染n个位置,两两相邻颜色不相同的总数,很简单a(k)=k(n-1)^(k-1) b(k)表示恰好用k种颜色 很显然a(k)=ΣC(k,i)b(i),我们知道a,想知道b,这里就用到二项式反演 那么b(k)=ΣC(k,i)*i*(-1)

UVALive 7040 Color (容斥原理+逆元+组合数+费马小定理+快速幂)

题目:传送门. 题意:t组数据,每组给定n,m,k.有n个格子,m种颜色,要求把每个格子涂上颜色且正好适用k种颜色且相邻的格子颜色不同,求一共有多少种方案,结果对1e9+7取余. 题解: 首先可以将m 与后面的讨论分离.从m 种颜色中取出k 种颜色涂色,取色部分有C(m, k) 种情况: 然后通过尝试可以发现,第一个有k种选择,第二个因不能与第一个相同,只有(k-1) 种选择,第三个也只需与第二个不同,也有(k-1) 种选择.总的情况数为k ×(k-1)^(n-1).但这仅保证了相邻颜色不同,总

组合数+容斥原理 UVALive 7040 Color(14西安F)

题目传送门 题意:n盆花涂色,相邻不能涂相同的颜色,从m中颜色选取k种颜色涂,保证正好有k种颜色 分析:从m中颜色选取k种就是C (m, k),然后第一个有k种选择,之后的都有k-1种选择,这样是不超过k种颜色的方案,那么减去少了Ai颜色的方案数,用容斥原理,最后答案是C(m,k) × ( k × (k-1)^(n-1) + ∑((-1)^p × C(k, p) × p × (p-1)^(n-1) ) (2 <= p <= k-1): #include <cstdio> #incl

二项式反演

问:给你k种颜色,你必须用上所有颜色去涂满n个相邻的格子,并且要求相邻格子的颜色不同,求方案数. 我们设必须用 i 种颜色两两不相邻的涂格子的方案数为 b(i) ; 很明显: ,我们令 a(k)=k·(k-1)n-1 , 然后有. 如果你知道二项式反演的话,那么这个问题就已经解决了,因为. 是不是觉得二项式反演很厉害,下面我将给出它的证明. 二项式反演公式: 证明: 然后让我们对进行分析: 我们预热一下: 有A,B,C,D,E,F,G 7个人,我们要先从中选出4个候选人,再从中选出3个作为mas

Uva 11609 - Team ( 组合数学 + 二项式性质 + 快速幂取模 )

Uva 11609 - Team ( 组合数学 + 二项式性质 + 快速幂取模 ) 题意: 有N个人,选一个或多个人参加比赛,其中一名当队长,有多少种方案? (如果参赛者完全相同但是队长不同,也算是一种情况) [ 1<=n <= 10^9 ] 分析: 这题要用到组合式公式的性质 转化之后快速幂取模轻松搞定之 代码: //Uva 11609 - Team /* 组合数公式 + 二项式系数性质 + 快速幂 手动自己推 -> F[n] = C(n,1)*1 + C(n,2)*2 + C(n,n

UVALive 4025 Color Squares(BFS)

题目链接:UVALive 4025 Color Squares 按题意要求涂色,求达到w分的最少步数. //yy:哇,看别人存下整个棋盘的状态来做,我什么都不想说了,不知道下午自己写了些什么东西,训练结束补的.. 1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 #include <queue> 5 #define CLR(a, b) memset((a),(b),sizeof

二项式反演学习笔记

这是一篇防遗忘的二项式反演证明博客 在此不给出精妙的容斥证明,开始推代数证明 众所周知二项式反演有两个形式 \(f(n) = \sum_{i = 0}^{n} (-1)^{i}\binom{n}{i}g(i) \Leftrightarrow g(n) = \sum_{i = 0}^{n} (-1)^{i} \binom{n}{i}f(i)\) 这个式子简直妙啊--太对称了 然而它更常用的形式是这个 \(f(n) = \sum_{i = 0}^{n}\binom{n}{i}g(i) \Leftri

Luogu4859 二项式反演

今天学了一个叫二项式反演的有趣东西. 其实它的核心式子就两个 若\(g_i=\sum_{j=i}^n\binom{j}{i}f[j]\) 那么\(f_i=\sum_{j=i}^n(-1)^{j-i}\binom{j}{i}g[j]\) 证明是用容斥证的. 现在我们看这道题. 题目链接 我们知道答案就是\(a>b\)的对数为\(\frac{n+k}{2}\)的方案数. 令\(x=\frac{n+k}{2}\) 考虑普通\(dp\). 用\(f[i][j]\)表示前\(i\)个数,已经有\(j\)对

[bzoj3622]已经没有什么好害怕的了——容斥or二项式反演+DP

题目大意: 给定两个长度为\(n\)的序列,求有多少种匹配方式,使得\(a_i<b_i\)的个数恰好为\(k\)个. 思路: 据说是一道二项式反演的经典例题了. 首先如果要求正好等于\(k\)个的是不太好求的,我们可以考虑求出至少为\(k\)个的方案数. 首先先把两个序列都按照从小到大的顺序排好序,然后以序列\(b\)为对象dp. 我们设\(f_{i,j}\)表示前\(i\)个数里面强制确定了\(j\)个\(a_i<b_i\)关系的方案数,记\(c_i\)表示在\(a\)中有多少个数<\