hadoop的wordcount的修改版

//这个是在原来的基础上修改以后得到的,将其中的分词的依据给换掉了,并且进行词频统计的时候会自动的忽略大小写

packageorg.apache.hadoop.mapred;

importjava.io.IOException;

importjava.util.ArrayList;

importjava.util.Iterator;

importjava.util.List;

importjava.util.StringTokenizer;

importorg.apache.hadoop.conf.Configuration;

import org.apache.hadoop.conf.Configured;

importorg.apache.hadoop.fs.Path;

importorg.apache.hadoop.io.IntWritable;

importorg.apache.hadoop.io.LongWritable;

importorg.apache.hadoop.io.Text;

importorg.apache.hadoop.mapred.FileInputFormat;

import org.apache.hadoop.mapred.FileOutputFormat;

importorg.apache.hadoop.mapred.JobClient;

importorg.apache.hadoop.mapred.JobConf;

importorg.apache.hadoop.mapred.MapReduceBase;

importorg.apache.hadoop.mapred.Mapper;

importorg.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.Reducer;

importorg.apache.hadoop.mapred.Reporter;

importorg.apache.hadoop.util.Tool;

importorg.apache.hadoop.util.ToolRunner;

public classWordCount extends Configured implements Tool {

/*

这个类实现mapper接口的map方法,输入的是文本总的每一行。利用StringTokenizer将字符串拆分成单词。然后将输出结果(word,
1)写入到OutputCollector中去

OutputCollector有hadoop框架提供,负责收集mapper和reducer的输出数据,实现map函数和reduce函数时。只需要将输出的<key,value>对向OutputCollector一丢即可,其余的事情框架会自己处理。

*/

public static class MapClass extendsMapReduceBase

implements Mapper<LongWritable, Text,Text, IntWritable> {

private final static IntWritable one = newIntWritable(1);

private Text word = new Text();

/*类中的LongWritable,  Text, IntWritable是hadoop中实现的用于封装Java数据类型的类,这些类都能够被串行化从而便于在分布式系统中进行数据交换,可以将它们等同的视为long,string,int的替代品

*/

public void map(LongWritable key, Textvalue,

OutputCollector<Text,IntWritable> output,

Reporter reporter) throwsIOException {

String line = value.toString();

StringTokenizer itr = new StringTokenizer(line,”\t\n\r\f,. : ; ? ! [] ‘ ”);

//原来只是用空格来分词,现在利用标点和空格等进行分词

while (itr.hasMoreTokens()) {

word.set(itr.nextToken().toLowerCase());//单词统计的时候忽略大小写

output.collect(word, one);//输出结果(word,1)

}

}

}

/*

此类实现的是Reducer接口中的reduce方法,函数中的参数key.value是由mapper输出的中间结果,values是一个iterator(迭代器)

*/

public static class Reduce extendsMapReduceBase

implements Reducer<Text, IntWritable,Text, IntWritable> {

public void reduce(Text key,Iterator<IntWritable> values,

OutputCollector<Text,IntWritable> output,

Reporter reporter)throws IOException {

int sum = 0;

/*

遍历这个迭代器,就能够得到有相同的key的所有的value值。

此处的key是一个单词,而value则是词频

*/

while (values.hasNext()) {

sum += values.next().get();

}

//遍历后得到这个单词出现的总次数。

output.collect(key, newIntWritable(sum));

}

}

static int printUsage() {

System.out.println("wordcount [-m<maps>] [-r <reduces>] <input> <output>");//输入输入路径

ToolRunner.printGenericCommandUsage(System.out);

return -1;

}

/*

Wordcount中map/reduce项目的主要驱动程序,调用此方法提交的map
/ reduce任务。在hadoop中一次计算任务成为一个job,可以通过以一个JobConf对象设置如何运行这个job,此处定义了输出的key
类型是text,而value的类型是IntWritable

*/

public int run(String[] args) throwsException {

JobConf conf = new JobConf(getConf(),WordCount.class);

conf.setJobName("wordcount");

// key是text(words)

conf.setOutputKeyClass(Text.class);

// value是IntWritable (ints)

conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(MapClass.class);

conf.setCombinerClass(Reduce.class);

conf.setReducerClass(Reduce.class);

List<String> other_args = newArrayList<String>();

for(int i=0; i < args.length; ++i) {

try {

if ("-m".equals(args[i])) {

conf.setNumMapTasks(Integer.parseInt(args[++i]));

} else if("-r".equals(args[i])) {

conf.setNumReduceTasks(Integer.parseInt(args[++i]));

} else {

other_args.add(args[i]);

}

} catch (NumberFormatException except) {

System.out.println("ERROR: Integerexpected instead of " + args[i]);

return printUsage();

} catch (ArrayIndexOutOfBoundsExceptionexcept) {

System.out.println("ERROR:Required parameter missing from " +

args[i-1]);

return printUsage();

}

}

// Make sure there are exactly 2 parametersleft.

if (other_args.size() != 2) {

System.out.println("ERROR: Wrongnumber of parameters: " +

other_args.size() +" instead of 2.");

return printUsage();

}

FileInputFormat.setInputPaths(conf,other_args.get(0));

FileOutputFormat.setOutputPath(conf, newPath(other_args.get(1)));

JobClient.runJob(conf);

return 0;

}

public static void main(String[] args) throwsException {

/* ToolRunner的run方法开始,run方法有三个参数。第一个是Configuration类的实例,第二个是wordcount的实例,args则是从控制台接收到的命令行数组

*/

int res = ToolRunner.run(newConfiguration(), new WordCount(), args);

System.exit(res);

}

}

时间: 2024-10-05 09:04:18

hadoop的wordcount的修改版的相关文章

Hadoop中WordCount代码-直接加载hadoop的配置文件

Hadoop中WordCount代码-直接加载hadoop的配置文件 在Myeclipse中,直接编写WordCount代码,代码中直接调用core-site.xml,hdfs-site.xml,mapred-site.xml配置文件 package com.apache.hadoop.function; import java.io.IOException; import java.util.Iterator; import java.util.StringTokenizer; import 

在ubuntu上安装eclipse同时连接hadoop运行wordcount程序

起先我是在win7 64位上远程连接hadoop运行wordcount程序的,但是这总是需要网络,考虑到这一情况,我决定将这个环境转移到unbuntu上 需要准备的东西 一个hadoop的jar包,一个连接eclipse的插件(在解压的jar包里有这个东西),一个hadoop-core-*.jar(考虑到连接的权限问题) 一个eclipse的.tar.gz包(其它类型的包也可以,eclipse本身就是不需要安装的,这里就不多说了) 因为我之前在win7上搭建过这个环境,所以一切很顺利,但还是要在

5行代码怎么实现Hadoop的WordCount?

初学编程的人,都知道hello world的含义,当你第一次从控制台里打印出了hello world,就意味着,你已经开始步入了编程的大千世界,这和第一个吃螃蟹的人的意义有点类似,虽然这样比喻并不恰当. 如果说学会了使用hello world就代表着你踏入了单机编程的大门,那么学会在分布式环境下使用wordcount,则意味着你踏入了分布式编程的大门.试想一下,你的程序能够成百上千台机器的集群中运行,是不是一件很有纪念意义的事情呢?不管在Hadoop中,还是Spark中,初次学习这两个开源框架做

[hadoop]命令行编译并运行hadoop例子WordCount

首先保证JDK.Hadoop安装设置成功 可以参考[linux]ubuntu下安装hadoop [linux]ubutnu12.04 下安装jdk1.7 使用hadoop版本为1.2.1,jdk为1.7 在hadoop-1.2.1\src\examples\org\apache\hadoop\examples找到WordCount.java 源码如下: 1 /** 2 * Licensed under the Apache License, Version 2.0 (the "License&q

Hadoop下面WordCount运行详解

单词计数是最简单也是最能体现MapReduce思想的程序之一,可以称为MapReduce版"Hello World",该程序的完整代码可以在Hadoop安装包的"src/examples"目录下找到.单词计数主要完成功能是:统计一系列文本文件中每个单词出现的次数,如下图所示. 现在我们以"hadoop"用户登录"Master.Hadoop"服务器. 1. 创建本地的示例数据文件: 依次进入[Home]-[hadoop]-[ha

SevenZip.pas BUG修改版

本来用的是Henri Gourvest <[email protected]> 1.2版本 然后发现了2个问题: 1.对于文件名中带有空格的文件, 无法压缩, 原因是1488行, 压缩调用的是TStringList.Delimiter 来拆分文件字符串, 而空格是默认分行符, 导致文件名错误 2.解压缩函数, 如果目标文件已存在并且为只读属性时, 报错, 原因是1105行 创建文件流的时候直接使用了TFileStream.Create(path, fmCreate)导致 针对以上2个问题, 对

[Linux][Hadoop] 运行WordCount例子

紧接上篇,完成Hadoop的安装并跑起来之后,是该运行相关例子的时候了,而最简单最直接的例子就是HelloWorld式的WordCount例子.   参照博客进行运行:http://xiejianglei163.blog.163.com/blog/static/1247276201443152533684/   首先创建一个文件夹,并创建两个文件,目录随意,为以下文件结构: examples --file1.txt --file2.txt 文件内容随意填写,我是从新闻copy下来的一段英文: 执

VB程序逆向反汇编常见的函数(修改版)

VB程序逆向常用的函数 1) 数据类型转换: a) __vbaI2Str    将一个字符串转为8 位(1个字节)的数值形式(范围在 0 至 255 之间) 或2 个字节的数值形式(范围在 -32,768 到 32,767 之间). b)__vbaI4Str   将一个字符串转为长整型(4个字节)的数值形式(范围从-2,147,483,6482,147,483,647) c)__vbar4Str  将一个字符串转为单精度单精度浮点型(4个字节)的数值形式 d)__vbar8Str   将一个字符

Delphi版的Base64转换函数(修改版)

Delphi版的Base64转换函数(修改版) 重新组织编写Delphi的MD2.MD4.MD5类