【转载】如何自学深度学习技术,大神Yann LeCun亲授建议

编者按:Quora 上有网友提问:自学机器学习技术,你有哪些建议?(What are your recommendations for self-studying machine learning),Yann LeCun 在该提问下做了解答。本文由雷锋网(公众号:雷锋网)根据 LeCun 的回答整理而来,原文链接:http://www.leiphone.com/news/201611/cWf2B23wdy6XLa21.html

  在网上有很多关于 Machine Learning 的材料、教程和视频课程,包括 Coursera 上的一些大学课程。这里我主要讲讲深度学习领域。

  你可以在网上听一些指导性课程和演讲,对深度学习有一个大致的了解。里面我比较推荐的有:

  • 2015 年 5 月《自然》上刊登的一篇概述性论文《深度学习》(Deep learning),由我自己、Yoshua Bengio 、Geoff Hinton 共同撰写。(网址:http://www.nature.com/nature/journal/v521/n7553/abs/nature14539.html
  • 系统性的课本方面,我推荐由 Goodfellow、Bengio 和 Courville 共同撰写的《深度学习》(Deep learning)(这个在网上有 HTML 版本,本书旨在帮助学生和从业人员入门机器学习,尤其是深度学习领域。HTML 版本已经编辑完成,并且永久免费。网址:http://www.deeplearningbook.org/
  • 我曾在巴黎法兰西公学院开课,其中有 8 堂课是关于深度学习,当时是用法语讲课,现在加上了英文版本。

法语版网址:Accueil

英语版网址:Home

  • Coursera 上面有 Geoff Hinton 关于神经网络的视频课程(不过从现在的角度看,内容稍微有点过时了)
  • 2012 年 IPAM 上针对研究生的“深度学习和特征学习夏季课程”(这个夏季课程的授课老师包括 Geoff Hinton 、Yann LeCun、吴恩达、Yoshua Bengio 等众多深度学习专家,历时半个多月时间,网上有完整视频录像,网址:http://www.ipam.ucla.edu/programs/summer-schools/graduate-summer-school-deep-learning-feature-learning/?tab=schedule
  • 2015 年我在纽约大学开了一门《深度学习》的课程,当时录成视频放到了网上,但是由于愚蠢的法律原因,视频现在已经不在了,但 PPT 还在。2017 年春天我会重新在纽约大学教这门课。网址:http://cilvr.nyu.edu/doku.php?id=deeplearning2015%3Aschedule
  • 2015 年在加拿大蒙特利尔市举行了“深度学习夏季课程”(该课程的对象为:已经具备的机器学习基本知识的研究生、业界工程师和研究人员,授课量十分丰富。网址:http://videolectures.net/deeplearning2015_montreal/
  • 另外,我还推荐一些关于特定平台的使用教程,比如 Torch、TensorFlow 和 Theano。
时间: 2024-10-13 00:12:45

【转载】如何自学深度学习技术,大神Yann LeCun亲授建议的相关文章

安防大数据挖掘的利刃:模式识别和深度学习技术

人工智能的概念提出已经很多年,但最近一次大热是在“人机大战”战胜世界围棋高手李世石的AlphaGo.同样,近几年安防行业热门的深度学习和模式识别的概念也频频出现在公众的视野当中,那么它们是如何应用在安防领域中?目前最前沿的应用又有哪些?以下将为您一一解答. 安防大数据挖掘 平安城市从2010年在全国推广至今已经6年,目前各地平安城市建设即将进入扩容改建期,需要更加综合与智能的整体解决方案.公共安防已不再局限于扩张视频监控覆盖广度和密度以及清晰度,而是由扩密度的传统安防时代向注重视频大数据挖掘.使

对比深度学习十大框架:TensorFlow 并非最好?

http://www.oschina.net/news/80593/deep-learning-frameworks-a-review-before-finishing-2016 TensorFlow 链接:https://www.tensorflow.org/ 对于那些听说过深度学习但还没有太过专门深入的人来说,TensorFlow 是他们最喜欢的深度学习框架,但在这里我要澄清一些事实. 在 TensorFlow 的官网上,它被定义为「一个用于机器智能的开源软件库」,但我觉得应该这么定义:Te

[转]浅谈AlphaGo背后所涉及的深度学习技术

转自:http://www.199it.com/archives/449359.html 导读:关于Alfa Go的评论文章很多,但真正能够与开发团队交流的却不多,感谢Alfa Go开发团队DeepMind的朋友对我这篇文章内容的关注与探讨,指出我在之前那一版文章中用字上的不够精确,所以在此又作调整.我之前文章提到的「全局」指的是跨时间点的整场赛局,很容易被误认为是某个特定时点整个棋盘的棋局,所以后面全部都修改为「整体棋局」.此外,关于整体棋局评估,除了透过脱机数据学习的评价网络之外,还可以透过

深度学习十大顶级框架

2015 年结束了,是时候看看 2016 年的技术趋势,尤其是关于深度学习方面.新智元在 2015 年底发过一篇文章<深度学习会让机器学习工程师失业吗?>,引起很大的反响.的确,过去一年的时间里,深度学习正在改变越来越多的人工智能领域.Google DeepMind 工程师 Jack Rae 预测说,过去被视为对于中型到大型数据集来说最佳的预测算法的那些模型(比如说提升决策树(Boosted Decision Trees)和随机森林)将会变得无人问津. 深度学习,或者更宽泛地说——使用联结主义

《神经网络与深度学习》(七) 浅谈AlphaGo背后所涉及的深度学习技术

导读:关于Alfa Go的评论文章很多,但真正能够与开发团队交流的却不多,感谢Alfa Go开发团队DeepMind的朋友对我这篇文章内容的关注与探讨,指出我在之前那一版文章中用字上的不够较精确,所以在此又作调整.我之前文章提到的「全局」指的是跨时间点的整场赛局,很容易被误认为是某个特定时点整个棋盘的棋局,所以后面全部都修改为「整体棋局」.此外,关于整体棋局评估,除了透过脱机数据学习的评价网络之外,还可以透过根据目前状态实时计算的不同策略评价差异(这项技术称之为Rollouts),它透过将计算结

对比《Keras图像深度学习实战》PDF+《深度学习技术图像处理入门》PDF代码分析

将深度学习技术应用于图像处理,推荐阅读<深度学习技术图像处理入门>,基于理论讲解,由浅入深地引出若干个经典案例,讲解当前深度神经网络在图像处理领域的应用.提供了基于云GPU容器(Docker)的完整在线开发环境,方便初学者直接学习核心代码. <深度学习技术图像处理入门>以通俗易懂的语言简要讲解机器学习的核心概念,通过比较传统机器学习和深度神经网络的区别,引入深度神经网络的应用领域,将一个完整的深度神经网络的复杂结构拆成输入处理.模型元件以及模型优化三个子块,并详细说明如何将深度神经

入门实战《深度学习技术图像处理入门》+《视觉SLAM十四讲从理论到实践》

学习图像识别处理,想在数据分析竞赛中取得较高的排名,看了<深度学习技术图像处理入门>电子书,一边看电子书一边做标记,对配套的代码也做了测试,收获颇多. 从机器学习.图像处理的基本概念入手,逐步阐述深度学习图像处理技术的基本原理以及简单的实现. 学习理论后做实验,使用卷积神经网络进行端到端学习,构建深度卷积神经网络,使用循环神经网络改进模型,评估模型,测试模型.最关键的是可以将模型运用于实战之中,将深度学习模型导入到工程中,数据类型转换函数,实施CAM可视化,这是我最需要的. 视觉和图形学真是一

将深度学习技术应用于基于情境感知的情绪识别

目录 本分享为脑机学习者Rose整理发表于公众号:脑机接口社区(微信号:Brain_Computer).QQ交流群:903290195 延世大学和洛桑联邦理工学院(EPFL)的研究团队最近开发了一种新的技术,可以通过分析图像中的人脸和上下文特征来识别情绪.他们在arXiv上预先发表的一篇论文中介绍并概述了他们基于深度学习的架构,称为CAER-Net. 近年来,世界各地的研究人员一直在尝试开发通过分析图像.视频或音频剪辑来自动检测人类情绪的工具.这些工具可以有许多应用,例如,改善人机交互或帮助医生

大学里如何成为技术大神

本文由PurpleSword(jzj1993)原创,转载请注明.原文网址 http://blog.csdn.net/jzj1993 总是有同学问我怎么学很多技术,好奇如何成为所谓的大神. 事实上,这篇文章是结合我的一些经历,讲述应该怎么学习技术,并不是要讲怎么成为大神.没有所谓的成功学,只有充满智慧的思考,脚踏实地的实干,和越来越近的理想,还有机遇和运气.之所以用这个标题,无非是吸引更多人.尤其是很多对成为大神抱有不切实际的幻想的人来看.希望读者能从中得到一些东西,没有浪费看这篇文的时间.这篇文