sqlserver 大数据量的insert、delete操作优化

http://blog.csdn.net/lanyuzhen/article/details/7547476

--大批量导出orders表:insert

DBCC DROPCLEANBUFFERS  
DBCC FREEPROCCACHE 
go
SET
NOCOUNT ON 
BEGIN TRANSACTION  
INSERT INTO test.dbo.orders
with(tablock) SELECT * FROM 
bak.dbo.Orders
WHERE ordertime BETWEEN
‘2010-05-01‘ AND ‘2010-05-10‘
COMMIT
go

--大批量导出orders表:delete

DBCC DROPCLEANBUFFERS  
DBCC FREEPROCCACHE 
go
SET
NOCOUNT ON 
BEGIN TRANSACTION  
while
1=1  
begin 
 delete top(1000) from test.dbo.orders
with(tablock) 
WHERE ordertime BETWEEN ‘2010-05-01‘ AND
‘2010-05-10‘
if
@@rowcount<1000 
 break  
end 
COMMIT
go

sqlserver 大数据量的insert、delete操作优化,布布扣,bubuko.com

时间: 2024-10-12 03:29:06

sqlserver 大数据量的insert、delete操作优化的相关文章

(转)大数据量高并发的数据库优化与sql优化

大数据量高并发的数据库优化 一.数据库结构的设计 如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能.所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的. 在一个系统分析.设计阶段,因为数据量较小,负荷较低.我们往往只注意到功能的实现,而很难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低,这时再来考虑提高系统性能则要花费更多的人力物力,而整个系统也不可避免的形成了一个打补丁工程. 所以在考虑整

[转]浅析大数据量高并发的数据库优化

链接:http://www.uml.org.cn/sjjm/201308264.asp 高并发数据库可以同时处理海量信息,应用范围很广.今天我们将讨论的是大数据量高并发的数据库优化,希望对大家有所帮助. 一.数据库结构的设计 如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能.所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的. 在一个系统分析.设计阶段,因为数据量较小,负荷较低.我们往往只注意到功能的实现,而很难注意到性

大数据量高并发的数据库优化

一.数据库结构的设计 如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能.所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的. 在一个系统分析.设计阶段,因为数据量较小,负荷较低.我们往往只注意到功能的实现,而很难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低,这时再来考虑提高系统性能则要花费更多的人力物力,而整个系统也不可避免的形成了一个打补丁工程. 所以在考虑整个系统的流程的时候,我们必须

大数据量高并发的数据库优化(转)

参考:http://www.cnblogs.com/chuncn/archive/2009/04/21/1440233.html 一.数据库结构的设计 如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能.所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的. 在一个系统分析.设计阶段,因为数据量较小,负荷较低.我们往往只注意到功能的实现,而很难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低,这时

DB开发之大数据量高并发的数据库优化

一.数据库结构的设计 如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能.所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的. 在一个系统分析.设计阶段,因为数据量较小,负荷较低.我们往往只注意到功能的实现,而很难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低,这时再来考虑提高系统性能则要花费更多的人力物力,而整个系统也不可避免的形成了一个打补丁工程. 所以在考虑整个系统的流程的时候,我们必须

大数据量高并发的数据库优化详解(MSSQL)

转载自:http://www.jb51.net/article/71041.htm 如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能.所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的. 一.数据库结构的设计 在一个系统分析.设计阶段,因为数据量较小,负荷较低.我们往往只注意到功能的实现,而很难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低,这时再来考虑提高系统性能则要花费更多的人力物力,而

大数据量高并发的数据库优化,sql查询优化

一.数据库结构的设计 如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能.所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的. 在一个系统分析.设计阶段,因为数据量较小,负荷较低.我们往往只注意到功能的实现,而很难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低,这时再来考虑提高系统性能则要花费更多的人力物力,而整个系统也不可避免的形成了一个打补丁工程. 所以在考虑整个系统的流程的时候,我们必须

MySQL大数据量分页查询方法及其优化

方法1: 直接使用数据库提供的SQL语句 语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N 适应场景: 适用于数据量较少的情况(元组百/千级) 原因/缺点: 全表扫描,速度会很慢 且 有的数据库结果集返回不稳定(如某次返回1,2,3,另外的一次返回2,1,3). Limit限制的是从结果集的M位置处取出N条输出,其余抛弃. 方法2: 建立主键或唯一索引, 利用索引(假设每页10条) 语句样式: MySQL中,可用如下方法: SELECT * FRO

对于大数据量高并发的系统性能优化总结

1. 尽量使用缓存,这里不是指的比如ORM框架HIBERNATE的一级缓存和二级缓存,而是独立的缓存服务器,它是存储于内存中的, 比如用户缓存,基本配置信息缓存等,它一般是在系统中经常要查的一些信息,在这里我们可以使用缓存, 我们项目中常用的比如redis memcache,这样可以大量减少与数据库的交互,提高性能. 2. 统计的功能尽量做缓存,或按每天一统计或定时统计相关报表,避免需要时进行统计的功能. 3. 能使用静态页面的地方尽量使用,减少容器的解析(尽量将动态内容生成静态html来显示)