二分图的最大匹配、完美匹配和匈牙利算法

这篇文章讲无权二分图(unweighted bipartite graph)的最大匹配(maximum matching)和完美匹配(perfect matching),以及用于求解匹配的匈牙利算法(Hungarian Algorithm);不讲带权二分图的最佳匹配。

二分图:简单来说,假设图中点能够被分为两组。而且使得全部边都跨越组的边界,则这就是一个二分图。准确地说:把一个图的顶点划分为两个不相交集 U和V 。使得每一条边都分别连接U、V中的顶点。

假设存在这种划分,则此图为一个二分图。二分图的一个等价定义是:不含有「含奇数条边的环」的图。图
1 是一个二分图。为了清晰,我们以后都把它画成图 2 的形式。

匹配:在图论中,一个「匹配」(matching)是一个边的集合,当中随意两条边都没有公共顶点。

比如,图 3、图 4 中红色的边就是图 2 的匹配。

      

我们定义匹配点、匹配边、未匹配点、非匹配边。它们的含义很显然。比如图 3 中 1、4、5、7 为匹配点,其它顶点为未匹配点。1-5、4-7为匹配边,其它边为非匹配边。

最大匹配:一个图全部匹配中。所含匹配边数最多的匹配,称为这个图的最大匹配。

图 4 是一个最大匹配,它包括 4 条匹配边。

完美匹配:假设一个图的某个匹配中。全部的顶点都是匹配点。那么它就是一个完美匹配。图 4 是一个完美匹配。

显然,完美匹配一定是最大匹配(完美匹配的不论什么一个点都已经匹配,加入一条新的匹配边一定会与已有的匹配边冲突)。但并不是每一个图都存在完美匹配。

举例来说:例如以下图所看到的。假设在某一对男孩和女孩之间存在相连的边。就意味着他们彼此喜欢。

是否可能让全部男孩和女孩两两配对。使得每对儿都互相喜欢呢?图论中。这就是完美匹配问题。

假设换一个说法:最多有多少互相喜欢的男孩/女孩能够配对儿?这就是最大匹配问题。

基本概念讲完了。求解最大匹配问题的一个算法是匈牙利算法,以下讲的概念都为这个算法服务。

交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边…形成的路径叫交替路。

增广路:从一个未匹配点出发,走交替路,假设途径还有一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。

比如,图 5 中的一条增广路如图 6 所看到的(图中的匹配点均用红色标出):

增广路有一个重要特点:非匹配边比匹配边多一条。

因此。研究增广路的意义是改进匹配。仅仅要把增广路中的匹配边和非匹配边的身份交换就可以。因为中间的匹配节点不存在其它相连的匹配边,所以这样做不会破坏匹配的性质。交换后,图中的匹配边数目比原来多了 1 条。

我们能够通过不停地找增广路来添加匹配中的匹配边和匹配点。找不到增广路时。达到最大匹配(这是增广路定理)。匈牙利算法正是这么做的。在给出匈牙利算法 DFS 和 BFS 版本号的代码之前,先讲一下匈牙利树。

匈牙利树一般由 BFS 构造(类似于 BFS 树)。从一个未匹配点出发执行 BFS(唯一的限制是,必须走交替路),直到不能再扩展为止。比如。由图 7,能够得到如图 8 的一棵 BFS 树:

       

这棵树存在一个叶子节点为非匹配点(7 号),可是匈牙利树要求全部叶子节点均为匹配点,因此这不是一棵匈牙利树。假设原图中根本不含 7 号节点,那么从 2 号节点出发就会得到一棵匈牙利树。

这样的情况如图 9 所看到的(顺便说一句。图 8 中根节点 2 到非匹配叶子节点 7 显然是一条增广路,沿这条增广路扩充后将得到一个完美匹配)。

以下给出匈牙利算法的 DFS 和 BFS 版本号的代码:

// 顶点、边的编号均从 0 開始
// 邻接表储存
struct Edge
{
    int from;
    int to;
    int weight;

    Edge(int f, int t, int w):from(f), to(t), weight(w) {}
};
vector<int> G[__maxNodes]; /* G[i] 存储顶点 i 出发的边的编号 */
vector<Edge> edges;
typedef vector<int>::iterator iterator_t;
int num_nodes;
int num_left;
int num_right;
int num_edges;
int matching[__maxNodes]; /* 存储求解结果 */
int check[__maxNodes];

bool dfs(int u)
{
    for (iterator_t i = G[u].begin(); i != G[u].end(); ++i) { // 对 u 的每一个邻接点
        int v = edges[*i].to;
        if (!check[v]) {     // 要求不在交替路中
            check[v] = true; // 放入交替路
            if (matching[v] == -1 || dfs(matching[v])) {
                // 假设是未盖点。说明交替路为增广路。则交换路径,并返回成功
                matching[v] = u;
                matching[u] = v;
                return true;
            }
        }
    }
    return false; // 不存在增广路。返回失败
}
int hungarian()
{
    int ans = 0;
    memset(matching, -1, sizeof(matching));
    for (int u=0; u < num_left; ++u) {
        if (matching[u] == -1) {
            memset(check, 0, sizeof(check));
            if (dfs(u))
                ++ans;
        }
    }
    return ans;
}
queue<int> Q;
int prev[__maxNodes];
int Hungarian()
{
    int ans = 0;
    memset(matching, -1, sizeof(matching));
    memset(check, -1, sizeof(check));
    for (int i=0; i<num_left; ++i) {
        if (matching[i] == -1) {
            while (!Q.empty()) Q.pop();
            Q.push(i);
            prev[i] = -1; // 设 i 为路径起点
            bool flag = false; // 尚未找到增广路
            while (!Q.empty() && !flag) {
                int u = Q.front();
                for (iterator_t ix = G[u].begin(); ix != G[u].end() && !flag; ++ix) {
                    int v = edges[*ix].to;
                    if (check[v] != i) {
                        check[v] = i;
                        Q.push(matching[v]);
                        if (matching[v] >= 0) { // 此点为匹配点
                            prev[matching[v]] = u;
                        } else { // 找到未匹配点,交替路变为增广路
                            flag = true;
                            int d=u, e=v;
                            while (d != -1) {
                                int t = matching[d];
                                matching[d] = e;
                                matching[e] = d;
                                d = prev[d];
                                e = t;
                            }
                        }
                    }
                }
                Q.pop();
            }
            if (matching[i] != -1) ++ans;
        }
    }
    return ans;
}

匈牙利算法的要点例如以下

  1. 从左边第 1 个顶点開始,挑选未匹配点进行搜索,寻找增广路。

    1. 假设经过一个未匹配点,说明寻找成功。更新路径信息。匹配边数 +1,停止搜索。

    2. 假设一直没有找到增广路,则不再从这个点開始搜索。其实。此时搜索后会形成一棵匈牙利树。我们能够永久性地把它从图中删去,而不影响结果。
  2. 因为找到增广路之后须要沿着路径更新匹配,所以我们须要一个结构来记录路径上的点。DFS 版本号通过函数调用隐式地使用一个栈。而 BFS 版本号使用 prev 数组。

性能比較

两个版本号的时间复杂度均为O(V?E)。DFS
的长处是思路清晰、代码量少,可是性能不如 BFS。我測试了两种算法的性能。

对于稀疏图。BFS 版本号明显快于 DFS 版本号;而对于稠密图两者则不相上下。在全然随机数据 9000 个顶点 4,0000 条边时前者率先后者大约 97.6%,9000 个顶点 100,0000 条边时前者率先后者 8.6%, 而达到 500,0000 条边时 BFS 仅率先 0.85%。

补充定义和定理:

最大匹配数:最大匹配的匹配边的数目

最小点覆盖数:选取最少的点,使随意一条边至少有一个端点被选择

最大独立数:选取最多的点,使随意所选两点均不相连

最小路径覆盖数:对于一个 DAG(有向无环图)。选取最少条路径。使得每一个顶点属于且仅属于一条路径。路径长能够为 0(即单个点)。

定理1:最大匹配数 = 最小点覆盖数(这是 Konig 定理)

定理2:最大匹配数 = 最大独立数

定理3:最小路径覆盖数 = 顶点数 - 最大匹配数

来自话题 algorithm / hungarian-algorithm

时间: 2024-10-05 03:02:57

二分图的最大匹配、完美匹配和匈牙利算法的相关文章

(转)二分图的最大匹配、完美匹配和匈牙利算法

转载自http://www.renfei.org/blog/bipartite-matching.html 二分图的最大匹配.完美匹配和匈牙利算法 这篇文章讲无权二分图(unweighted bipartite graph)的最大匹配(maximum matching)和完美匹配(perfect matching),以及用于求解匹配的匈牙利算法(Hungarian Algorithm):不讲带权二分图的最佳匹配. 二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这就是

二分图的最大匹配、完美匹配和匈牙利算法(转)

转载自:http://blog.csdn.net/pi9nc/article/details/11848327 二分图的最大匹配.完美匹配和匈牙利算法 这篇文章讲无权二分图(unweighted bipartite graph)的最大匹配(maximum matching)和完美匹配(perfect matching),以及用于求解匹配的匈牙利算法(Hungarian Algorithm):不讲带权二分图的最佳匹配. 二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这

(转)二分图的最大匹配、完美匹配和匈牙利算法

二分图的最大匹配.完美匹配和匈牙利算法 这篇文章讲无权二分图(unweighted bipartite graph)的最大匹配(maximum matching)和完美匹配(perfect matching),以及用于求解匹配的匈牙利算法(Hungarian Algorithm):不讲带权二分图的最佳匹配. 二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这就是一个二分图.准确地说:把一个图的顶点划分为两个不相交集 U  和 V ,使得每一条边都分别连接U . V  

HDU_2255 二分图最佳完美匹配 KM匈牙利算法

一开始还没看懂这个算法,后来看了陶叔去年的PPT的实例演示才弄懂 用一个lx[]和ly[]来记录X和Y集合中点的权值,有个定理是 lx[i]+ly[j]==w[i][j](边权值) 则该点是最佳匹配,因为首先 那个不等式肯定要>=的,否则就不满足题意了,如果是>则可以去匹配更有价值的边或者把权值降下来让匹配边的潜力更大. 所以只有把握了这个条件,其他就是走一遍最大匹配数.以及up()函数用来在无法匹配的时候,进行其他点的权值降低(也可以说是增广路的搜索)来得到匹配. #include <

hdoj 2063 过山车(二分图匹配之匈牙利算法)

过山车 http://acm.hdu.edu.cn/showproblem.php?pid=2063 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 13019    Accepted Submission(s): 5709 Problem Description RPG girls今天和大家一起去游乐场玩,终于可以坐上梦寐以求的过山车

[图论] 二分图匹配(匈牙利算法)

介绍部分转载于维基百科: 匈牙利算法是众多用于解决线性任务分配问题的算法之一,是用来解决二分图最大匹配问题的经典算法,可以在多项式时间内解决问题,由美国数学家Harold Kuhn 于1955年提出.此算法之所以被称作匈牙利算法是因为算法很大一部分是基于以前匈牙利数学家Dénes K?nig和Jen? Egerváry的工作之上创建起来的. 问题简介: 设G=(V,E)是一个无向图.如顶点集V可分区为两个互不相交的子集V1,V2之并,并且图中每条边依附的两个顶点都分属于这两个不同的子集.则称图G

二分图匹配(匈牙利算法)

[书本上的算法往往讲得非常复杂,我计划用一个幽默的例子来描述算法的流程] 匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名.匈牙利算法是基于Hall定理中充分性证明的思想,它是部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法. 一.先上基本概念: 二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这就是一个二分图.准确地说:把一个图的顶点划分为两个不相交集 UU 和VV ,使得每一条边都分别连接UU.VV中的

【二分图最大权完美匹配】【KM算法模板】【转】

[文章详解出处]https://www.cnblogs.com/wenruo/p/5264235.html KM算法是用来求二分图最大权完美匹配的.[也就算之前的匈牙利算法求二分最大匹配的变种??] 这里就贴一下模板代码..2333... 1 #include <iostream> 2 #include <cstring> 3 #include <cstdio> 4 #include <algorithm> 5 using namespace std; 6

二分图匹配(匈牙利算法模板)

二分最大匹配的匈牙利算法模板 /* *************************************************** 二分图匹配(匈牙利算法的DFS实现) INIT:G[][]两边定点划分的情况 CALL:res=Hungary();输出最大匹配数 优点:适于稠密图,DFS找增广路快,实现简洁易于理解 时间复杂度:O(VE); *************************************************** */ const int MAXN = 51