HDU 2489 Minimal Ratio Tree (dfs+Prim最小生成树)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2489

Problem Description

For a tree, which nodes and edges are all weighted, the ratio of it is calculated according to the following equation.

Given a complete graph of n nodes with all nodes and edges weighted, your task is to find a tree, which is a sub-graph of the original graph, with m nodes and whose ratio is the smallest among all the trees of m nodes in the graph.

Input

Input contains multiple test cases. The first line of each test case contains two integers n (2<=n<=15) and m (2<=m<=n), which stands for the number of nodes in the graph and the number of nodes in the minimal ratio tree. Two zeros end the input. The next line
contains n numbers which stand for the weight of each node. The following n lines contain a diagonally symmetrical n×n connectivity matrix with each element shows the weight of the edge connecting one node with another. Of course, the diagonal will be all
0, since there is no edge connecting a node with itself.

All the weights of both nodes and edges (except for the ones on the diagonal of the matrix) are integers and in the range of [1, 100].

The figure below illustrates the first test case in sample input. Node 1 and Node 3 form the minimal ratio tree.

Output

For each test case output one line contains a sequence of the m nodes which constructs the minimal ratio tree. Nodes should be arranged in ascending order. If there are several such sequences, pick the one which has the smallest node number; if there‘s a tie,
look at the second smallest node number, etc. Please note that the nodes are numbered from 1 .

Sample Input

3 2
30 20 10
0 6 2
6 0 3
2 3 0
2 2
1 1
0 2
2 0
0 0

Sample Output

1 3
1 2

Source

2008 Asia Regional Beijing

题意:

给出n个点,要从中选出m个点,要求选出的这m个点的所有边的边权值/点权值要最小!

并要输出所选的这m个点,如果有多种选择方法,那么就输出第一个点小的方案,如果第一个点相同就输出第二个点小的,一次类推!

PS:

由于这题的n比较小,只有15,所以可以先dfs枚举出所选择的点,然后在用最小生成树Prim算出最小的边权值的和;

代码如下:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
#define INF 1e18;
const double eps = 1e-9;
const int maxn = 17;
int n, m;
int e_val[maxn][maxn];
int node[maxn];
int ansn[maxn];//记录最终选得是哪些点
int tt[maxn];//记录中间过程选得是哪些点
int vis[maxn];
int low[maxn];
double minn;
int Prim(int s)
{
    int sum=0;
    memset(vis,0,sizeof(vis));
    for(int i = 1; i <= m; i++)
    {
        low[tt[i]] = e_val[s][tt[i]];
    }
    vis[s] = 1;
    low[s] = 0;
    int pos = s;
    for(int i = 1; i < m; i++)
    {
        int min_t = INF;
        for(int j = 1; j <= m; j++)
        {
            if(!vis[tt[j]] && min_t > low[tt[j]])
            {
                min_t = low[tt[j]];
                pos = tt[j];
            }
        }
        vis[pos] = 1;
        sum += min_t;
        for(int j = 1; j <= m; j++)
        {
            if(!vis[tt[j]] && e_val[pos][tt[j]] < low[tt[j]])
                low[tt[j]]=e_val[pos][tt[j]];
        }
    }
    return sum;
}
void DFS(int n_pre, int k)
{
    if(k == m)
    {
        double n_sum = 0;
        for(int i = 1; i <= m ; i++)
        {
            n_sum+=node[tt[i]];
        }
        double e_ans = 0;
        e_ans = Prim(tt[1]);
        double ans = e_ans/(n_sum*1.0);
        //if(ans < minn)
        if(ans - minn < -(eps))
        {
            minn = ans;
            for(int i = 1; i <= m; i++)
            {
                ansn[i] = tt[i];
            }
        }
        return ;
    }
    for(int i = n_pre+1; i <= n; i++)
    {
        tt[k+1] = i;
        DFS(i,k+1);
    }
}
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        if(n==0 && m==0)
            break;
        minn = INF;
        for(int i = 1; i <= n; i++)
        {
            scanf("%d",&node[i]);
        }
        for(int i = 1; i <= n; i++)
        {
            for(int j = 1; j <= n; j++)
            {
                scanf("%d",&e_val[i][j]);
            }
        }
        for(int i = 1; i <= n; i++)
        {
            tt[1] = i;
            DFS(i, 1);
        }
        for(int i = 1; i < m; i++)
        {
            printf("%d ",ansn[i]);
        }
        printf("%d\n",ansn[m]);
    }
    return 0;
}
时间: 2024-12-29 06:51:21

HDU 2489 Minimal Ratio Tree (dfs+Prim最小生成树)的相关文章

hdu 2489 Minimal Ratio Tree(dfs枚举 + 最小生成树)~~~

题目: 链接:点击打开链接 题意: 输入n个点,要求选m个点满足连接m个点的m-1条边权值和sum与点的权值和ans使得sum/ans最小,并输出所选的m个点,如果有多种情况就选第一个点最小的,如果第一个点也相同就选第二个点最小的........ 思路: 求一个图中的一颗子树,使得Sum(edge weight)/Sum(point weight)最小~ 数据量小,暴力枚举~~~~~dfs暴力枚举C(M,N)种情况. 枚举出这M个点之后,Sum(point weight)固定,进行prim或者K

HDU 2489 Minimal Ratio Tree (DFS枚举+最小生成树Prim)

Problem Description For a tree, which nodes and edges are all weighted, the ratio of it is calculated according to the following equation. Given a complete graph of n nodes with all nodes and edges weighted, your task is to find a tree, which is a su

HDU 2489 Minimal Ratio Tree(数据结构-最小生成树)

Minimal Ratio Tree Problem Description For a tree, which nodes and edges are all weighted, the ratio of it is calculated according to the following equation. Given a complete graph of n nodes with all nodes and edges weighted, your task is to find a

hdu 2489 Minimal Ratio Tree DFS枚举点+最小生成树 属于中等偏上题 ,Double比较大小的时候注意精度问题

Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2835    Accepted Submission(s): 841 Problem Description For a tree, which nodes and edges are all weighted, the ratio of it is

HDU 2489 Minimal Ratio Tree(prim+DFS)

Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 3345    Accepted Submission(s): 1019 Problem Description For a tree, which nodes and edges are all weighted, the ratio of it i

hdu 2489 Minimal Ratio Tree (DFS枚举+MST)

参考链接:http://blog.csdn.net/xingyeyongheng/article/details/9373271 http://www.cnblogs.com/chenxiwenruo/p/3294668.html 1 #include<iostream> 2 #include<cstdio> 3 #include<cstdlib> 4 #include<cstring> 5 #include<string> 6 #include

hdu 2489 Minimal Ratio Tree 枚举+最小生成树

点的总数很小,直接枚举就好. #include <stdio.h> #include <string.h> #define N 20 #define inf 1000000 int mk[N],n,k,ans[N]; double low[N],val[N]; double map[N][N],MIN; double prim() { int i,j; double sum=0; double tot=0; for(i=1;i<=n;i++) low[i]=inf; int

HDU 2489 Minimal Ratio Tree

Minimal Ratio Tree Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID: 248964-bit integer IO format: %I64d      Java class name: Maina For a tree, which nodes and edges are all weighted, the ratio of it is calcul

HDU 2489 Minimal Ratio Tree(最小生成树)

该题就是最小生成树算法的变形,由于这个比值没有什么规律,不可能一下子算出最小情况,我们可以很容易发现,结点数非常少,所以我们可以枚举出m个结点的所有组合,这样,结点权值只和就确定了,为了使得比值最小,那么就要使得边权值之和最小,也就是最小生成树模板了. 枚举n个数中的m个可以有两种方法: dfs和二进制枚举子集. 该题我用的二进制,感觉比较方便. 细节参见代码: #include<cstdio> #include<cstring> #include<iostream>