Project Euler:Problem 47 Distinct primes factors

The first two consecutive numbers to have two distinct prime factors are:

14 = 2 × 7

15 = 3 × 5

The first three consecutive numbers to have three distinct prime factors are:

644 = 22 × 7 × 23

645 = 3 × 5 × 43

646 = 2 × 17 × 19.

Find the first four consecutive integers to have four distinct prime factors. What is the first of these numbers?

#include <iostream>
#include <map>
using namespace std;

int factors(int n)
{
	map<int, int>mp;
	int i = 2;
	while (n > 1)
	{
		if (n%i == 0)
		{
			mp[i]++;
			n /= i;
		}
		else
			i++;
	}
	return mp.size();
}

int main()
{
	for (int i = 20; i <= 1000000; i++)
	{
		if (factors(i) == 4)
		{
			if (factors(i + 1) == 4)
			{
				if (factors(i + 2) == 4)
				{
					if (factors(i + 3) == 4)
					{
						cout << i << endl;
						break;
					}
				}
			}
		}
	}
	system("pause");
	return 0;
}
时间: 2024-10-25 14:48:12

Project Euler:Problem 47 Distinct primes factors的相关文章

Project Euler:Problem 58 Spiral primes

Starting with 1 and spiralling anticlockwise in the following way, a square spiral with side length 7 is formed. 37 36 35 34 33 32 31 38 17 16 15 14 13 30 39 18  5  4  3 12 29 40 19  6  1  2 11 28 41 20  7  8  9 10 27 42 21 22 23 24 25 26 43 44 45 46

Project Euler:Problem 27 Quadratic primes

Euler discovered the remarkable quadratic formula: n2 + n + 41 It turns out that the formula will produce 40 primes for the consecutive values n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible by 41, and certainly when n

Project Euler:Problem 29 Distinct powers

Consider all integer combinations of ab for 2 ≤ a ≤ 5 and 2 ≤ b ≤ 5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, 35=243 42=16, 43=64, 44=256, 45=1024 52=25, 53=125, 54=625, 55=3125 If they are then placed in numerical order, with any repeats removed

Project Euler:Problem 37 Truncatable primes

The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3. Fi

Project Euler:Problem 46 Goldbach&#39;s other conjecture

It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square. 9 = 7 + 2×12 15 = 7 + 2×22 21 = 3 + 2×32 25 = 7 + 2×32 27 = 19 + 2×22 33 = 31 + 2×12 It turns out that the conjecture was f

Project Euler:Problem 40 Champernowne&#39;s constant

An irrational decimal fraction is created by concatenating the positive integers: 0.123456789101112131415161718192021... It can be seen that the 12th digit of the fractional part is 1. If dn represents the nth digit of the fractional part, find the v

Project Euler:Problem 90 Cube digit pairs

Each of the six faces on a cube has a different digit (0 to 9) written on it; the same is done to a second cube. By placing the two cubes side-by-side in different positions we can form a variety of 2-digit numbers. For example, the square number 64

Project Euler:Problem 18 Maximum path sum I

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. 3 7 4 2 4 6 8 5 9 3 That is, 3 + 7 + 4 + 9 = 23. Find the maximum total from top to bottom of the triangle below

Project Euler:Problem 55 Lychrel numbers

If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. Not all numbers produce palindromes so quickly. For example, 349 + 943 = 1292, 1292 + 2921 = 4213 4213 + 3124 = 7337 That is, 349 took three iterations to arrive at a palindrome. Al