常用哈希函数的比较及其C语言实现

基本概念

所谓完美哈希函数,就是指没有冲突的哈希函数,即对任意的 key1 != key2 有h(key1) != h(key2)。

设定义域为X,值域为Y, n=|X|,m=|Y|,那么肯定有m>=n,如果对于不同的key1,key2属于X,有h(key1)!=h(key2),那么称h为完美哈希函数,当m=n时,h称为最小完美哈希函数(这个时候就是一一映射了)。

在处理大规模字符串数据时,经常要为每个字符串分配一个整数ID。这就需要一个字符串的哈希函数。怎么样找到一个完美的字符串hash函数呢?

有一些常用的字符串hash函数。像BKDRHash,APHash,DJBHash,JSHash,RSHash,SDBMHash,PJWHash,ELFHash等等。都是比较经典的。

常用的字符串Hash函数还有ELFHash,APHash等等,都是十分简单有效的方法。这些函数使用位运算使得每一个字符都对最后的函数值产生影响。另外还有以MD5和SHA1为代表的杂凑函数,这些函数几乎不可能找到碰撞。

常用字符串哈希函数有 BKDRHash,APHash,DJBHash,JSHash,RSHash,SDBMHash,PJWHash,ELFHash等等。对于以上几种哈希函数,我对其进行了一个小小的评测。

Hash函数 数据1 数据2 数据3 数据4 数据1得分 数据2得分 数据3得分 数据4得分 平均分
BKDRHash 2 0 4774 481 96.55 100 90.95 82.05 92.64
APHash 2 3 4754 493 96.55 88.46 100 51.28 86.28
DJBHash 2 2 4975 474 96.55 92.31 0 100 83.43
JSHash 1 4 4761 506 100 84.62 96.83 17.95 81.94
RSHash 1 0 4861 505 100 100 51.58 20.51 75.96
SDBMHash 3 2 4849 504 93.1 92.31 57.01 23.08 72.41
PJWHash 30 26 4878 513 0 0 43.89 0 21.95
ELFHash 30 26 4878 513 0 0 43.89 0 21.95

其中数据1为100000个字母和数字组成的随机串哈希冲突个数。数据2为100000个有意义的英文句子哈希冲突个数。数据3为数据1的哈希值与 1000003(大素数)求模后存储到线性表中冲突的个数。数据4为数据1的哈希值与10000019(更大素数)求模后存储到线性表中冲突的个数。

经过比较,得出以上平均得分。平均数为平方平均数。可以发现,BKDRHash无论是在实际效果还是编码实现中,效果都是最突出的。APHash也是较为优秀的算法。DJBHash,JSHash,RSHash与SDBMHash各有千秋。PJWHash与ELFHash效果最差,但得分相似,其算法本质是相似的。

unsigned int SDBMHash(char *str)
{
    unsigned int hash = 0;

    while (*str)
    {
        // equivalent to: hash = 65599*hash + (*str++);
        hash = (*str++) + (hash << 6) + (hash << 16) - hash;
    }

    return (hash & 0x7FFFFFFF);
}

// RS Hash Function
unsigned int RSHash(char *str)
{
    unsigned int b = 378551;
    unsigned int a = 63689;
    unsigned int hash = 0;

    while (*str)
    {
        hash = hash * a + (*str++);
        a *= b;
    }

    return (hash & 0x7FFFFFFF);
}

// JS Hash Function
unsigned int JSHash(char *str)
{
    unsigned int hash = 1315423911;

    while (*str)
    {
        hash ^= ((hash << 5) + (*str++) + (hash >> 2));
    }

    return (hash & 0x7FFFFFFF);
}

// P. J. Weinberger Hash Function
unsigned int PJWHash(char *str)
{
    unsigned int BitsInUnignedInt = (unsigned int)(sizeof(unsigned int) * 8);
    unsigned int ThreeQuarters    = (unsigned int)((BitsInUnignedInt  * 3) / 4);
    unsigned int OneEighth        = (unsigned int)(BitsInUnignedInt / 8);
    unsigned int HighBits         = (unsigned int)(0xFFFFFFFF) << (BitsInUnignedInt - OneEighth);
    unsigned int hash             = 0;
    unsigned int test             = 0;

    while (*str)
    {
        hash = (hash << OneEighth) + (*str++);
        if ((test = hash & HighBits) != 0)
        {
            hash = ((hash ^ (test >> ThreeQuarters)) & (~HighBits));
        }
    }

    return (hash & 0x7FFFFFFF);
}

// ELF Hash Function
unsigned int ELFHash(char *str)
{
    unsigned int hash = 0;
    unsigned int x    = 0;

    while (*str)
    {
        hash = (hash << 4) + (*str++);
        if ((x = hash & 0xF0000000L) != 0)
        {
            hash ^= (x >> 24);
            hash &= ~x;
        }
    }

    return (hash & 0x7FFFFFFF);
}

// BKDR Hash Function
unsigned int BKDRHash(char *str)
{
    unsigned int seed = 131; // 31 131 1313 13131 131313 etc..
    unsigned int hash = 0;

    while (*str)
    {
        hash = hash * seed + (*str++);
    }

    return (hash & 0x7FFFFFFF);
}

// DJB Hash Function
unsigned int DJBHash(char *str)
{
    unsigned int hash = 5381;

    while (*str)
    {
        hash += (hash << 5) + (*str++);
    }

    return (hash & 0x7FFFFFFF);
}

// AP Hash Function
unsigned int APHash(char *str)
{
    unsigned int hash = 0;
    int i;

    for (i=0; *str; i++)
    {
        if ((i & 1) == 0)
        {
            hash ^= ((hash << 7) ^ (*str++) ^ (hash >> 3));
        }
        else
        {
            hash ^= (~((hash << 11) ^ (*str++) ^ (hash >> 5)));
        }
    }

    return (hash & 0x7FFFFFFF);
}

编程珠玑中的一个hash函数

//用跟元素个数最接近的质数作为散列表的大小
#define NHASH 29989
#define MULT 31

unsigned in hash(char *p)
{
    unsigned int h = 0;
    for (; *p; p++)
        h = MULT *h + *p;
    return h % NHASH;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-11-03 03:24:31

常用哈希函数的比较及其C语言实现的相关文章

哈希函数的常用构造方法

哈希函数在现实生活中应用十分广泛,例如她已经成为密码学领域一个热门话题,很多学者都在研究如何设计.分析和评价Hash函数,以及如何给出一个可证明安全的Hash函数等问题.在一些Bit Torrent下载中,软件通过计算文件的MD5值检验下载到的文件片段的完整性.哈希函数其实是一个压缩映像,因此不可避免的产生冲突,那么在建造哈希表时不仅要设定一个好的哈希函数,还要设定一种处理冲突的方法.本文简单讨论哈希函数的构造准则和七种构造方法. 哈希函数构造准则 hash函数的构造准则:简单.均匀. (1)散

Bloom filter的实现以及常用的hash函数

bloom filter利用时间换空间的思想,利用多个哈希函数,将一个元素的存在状态映射到多个bit中,特别是在网络环境中,BF具有广泛的用途,关键问题就是要减少false positive rate(可以设置参数来调节),扩展有 counting BF.这里选用的hash函数是表现较好的 BKDRHash , SDBMHash, DJBHash . Bloom-filter代码: bloom_filter.h #ifndef __BLOOM_FILTER_H__ #define __BLOOM

常用的 STL 函数

常用的 STL 函数 Table of Contents 介绍 string 队列 最大堆 集合 哈希 map, pair list vector 介绍 容器, 迭代器, 算法 容器: 顺序容器 (vector, list, deque, string), 有序集合 关联容器 (set, multiset, map, multimap), 包含查找元素到键值 迭代器: 遍历容器 traverse container 算法库: 排序, 不可变序, 变序性, 数值 迭代器可以使用 +1 的, vec

几种哈希函数的比较

基本概念所谓完美哈希函数,就是指没有冲突的哈希函数,即对任意的 key1 != key2 有h(key1) != h(key2).设定义域为X,值域为Y, n=|X|,m=|Y|,那么肯定有m>=n,如果对于不同的key1,key2属于X,有h(key1)!=h(key2),那么称h为完美哈希函数,当m=n时,h称为最小完美哈希函数(这个时候就是一一映射了). 在处理大规模字符串数据时,经常要为每个字符串分配一个整数ID.这就需要一个字符串的哈希函数.怎么样找到一个完美的字符串hash函数呢?有

哈希函数和哈希表综述 (转)

哈希表及哈希函数研究综述 摘要 随着信息化水平的不断提高,数据已经取代计算成为了信息计算的中心,对存储的需求不断提高信息量呈现爆炸式增长趋势,存储已经成为急需提高的瓶颈.哈希表作为海量信息存储的有效方式,本文详细介绍了哈希表的设计.冲突解决方案以及动态哈希表.另外针对哈希函数在相似性匹配.图片检索.分布式缓存和密码学等领域的应用做了简短得介绍 哈希经过这么多年的发展,出现了大量高性能的哈希函数和哈希表.本文通过介绍各种不同的哈希函数的设计原理以及不同的哈希表实现,旨在帮助读者在实际应用中,根据问

哈希表之二哈希函数的构造

了解了hash的思想之后,会发现哈希函数只是将关键字对下标的映射,没有什么特别的标准,冲突的多少就是衡量其好坏. 若对于关键字集合中的任一一个关键字,经哈希函数映像到地址集合中任何一个地址的概率是相等的, 则称此类哈希函数为均匀的(Uniform)哈希函数. 如果关键字能够进过哈希函数计算得出的地址能够均匀地分布在地址区间中,就可以减少冲突. 直接定地址法 H(key)=key或H(key)=a*key+b 直接定址所得地址集合和关键字集合的大小相同,对于不同关键字不会发生冲突,但是实际使用较少

javascript十个最常用的自定义函数

如果不使用类库或者没有自己的类库,储备一些常用函数总是有好处的. (10)addEvent 网上最流行的版本是Scott Andrew的,据说javascript界曾举行一场比赛(此事件我们可以在Pro Javascript Techniques第100页看到)或浏览PPK的网站,征求添加事件与移除事件的函数,他就是其获奖者.下面就是他的实现: function addEvent(elm, evType, fn, useCapture) { if (elm.addEventListener) {

1.3.2 常用内置函数

常用内置函数(Built-In Functions,BIF)不需要导入任何模块即可直接使用,在IDLE中执行如下命令可以列出所有内置函数和内置对象,如代码块1.3.2.1所示: 1 >>> dir(__builtins__) 2 ['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException', 'BlockingIOError', 'BrokenPipeError', 'BufferError', 'Byte

证明与计算(5): 从加密哈希函数到一致性哈希

目录: ** 0x01 [哈希函数] vs [加密哈希函数] ** 0x02 [哈希碰撞] vs [生日问题] ** 0x03 [哈希表] vs [分布式哈希表] ** 0x04 [欧式距离] vs [三角不等式] ** 0x05 [异或距离] vs [前缀路由表] 0x01 [哈希函数] vs [加密哈希函数] 在哈希表计算索引的时候,我们需要一个哈希函数,通过hash(key)来计算key在哈希表里的index.这个地方的哈希函数只要尽量满足均匀分布,周期尽量大,计算速度又足够快等即可.而在