极大似然估计的朴素理解

最大似然法,英文名称是Maximum Likelihood Method,在统计中应用很广。这个方法的思想最早由高斯提出来,后来由菲舍加以推广并命名。

最大似然法是要解决这样一个问题:给定一组数据和一个参数待定的模型,如何确定模型的参数,使得这个确定参数后的模型在所有模型中产生已知数据的概率最 大。通俗一点讲,就是在什么情况下最有可能发生已知的事件。举个例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我 们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球 再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比 例最有可能是多少?

我想很多人立马有答案:70%。这个答案是正确的。可是为什么呢?(常识嘛!这还要问?!)其实,在很多常识的背后,都有相应的理论支持。在上面的问题 中,就有最大似然法的支持。

在很久以前的一个下午,自己在图书馆看书,书中讲到了同一独立分布(i.i.d., identical and independent distribution),与概率相关。当时已经听说最大似然法很长时间了,最大似然法在不同场合应用的结论看过不少,但自己还没有真正地学习和应用 过。突然想到了上面的例子(类似的例子在自己以后的阅读很常见,当时没有意识到自己到底以前看过类似的例子没有),决定自己动手算一算。

下面会有一些数学,我知道西河比较深,大牛比较多,看了不要见笑。有意见和建议尽管提。

我们假设罐中白球的比例是p,那么黑球的比例就是1-p。因为每抽一个球出来,在记录颜色之后,我们把抽出的球放回了罐中并摇匀,所以每次抽出来的球的颜 色服从同一独立分布。这里我们把一次抽出来球的颜色称为一次抽样。题目中在一百次抽样中,七十次是白球的概率是P(Data | M),这里Data是所有的数据,M是所给出的模型,表示每次抽出来的球是白色的概率为p。如果第一抽样的结果记为x1,第二抽样的结果记为x2,。。。 那么Data = (x1,x2,...,x100)。这样,
P(Data | M)
= P(x1,x2,...,x100|M)
= P(x1|M)P(x2|M)...P(x100|M)
= p^70(1-p)^30.
那么p在取什么值的时候,P(Data |M)的值最大呢?将p^70(1-p)^30对p求导,并其等于零。
70p^69(1-p)^30-p^70*30(1-p)^29=0。
解方程可以得到p=0.7。
在边界点p=0,1,P(Data|M)=0。所以当p=0.7时,P(Data|M)的值最大。这和我们常识中按抽样中的比例来计算的结果是一样的。

当时,自己推到完这些,心情很高兴,感觉自己理解了最大似然法。接着想到了连续变量。

假如我们有一组连续变量的采样值(x1,x2,...,xn),我们知道这组数据服从正态分布,标准差已知。请问这个正态分布的期望值为多少时,产生这个 已有数据的概率最大?
P(Data | M) = ??

求导,u=(x1+x2+...+xn)/n.这个正态分布的期望值,就是这组数据的均值。在我们的日常生活和工作中,我们经常会用到平均值,这是有道理 的,可以用最大似然法来解释。如果数据服从正态分布,这是最可能的数据。

当我第一次自己推导出这些的时候,心中有一种豁然开朗、恍然大悟的感觉:最大似然法就这样!

最大似然法原理简单,应用很广。举个例子,这样的情况在生活会经常遇到。假如人们会感染一种病毒,有一种测试方法,在被测试者已感染这个病毒时,测试结果 为阳性的概率为95%。在被测试者没有感染这个病毒时,测试结果为阳性的概率为2%。现在,有一个人的测试结果为阳性,问这个人感染了病毒吗?根据最大似 然法,如果一个人感染病毒,95%的测试结果会为阳性;而如果这个人没有感染病毒,只有2%的测试结果会为阳性,所以这个人应该是已经感染病毒了。

最大似然法应用广泛,但是经常会受到一种批评,而且对于这种批评,尤其在数据量比较小的时候,最大似然法的支持者没有很多充分的反驳理由:在最大似然法 中,只考虑了由一个模型产生一个已知数据的概率,而没有考虑模型本身的概率。相对应的考虑了模型本身概率的方法,是贝叶斯方法(Bayesian method)。

在上面测试病毒的例子中,如果我们知道在整体人群中,只有1%人会感染这种病毒,那么,根据贝叶斯方法,这个被测试者只有1/3左右的可能性感染了病毒 {1%*95%/(1%*95%+99%*2%)=32.4%}
在这里,我们看到先验概率对结果的影响很大。

不过,当数据量比较大的时候,先验概率的影响就会减小。比如,人们在被检测出感染了一个严重的病毒后,一般会去其他医院复查。假如同一个人在三家医院进行 了独立的检查,结果都是阳性。那么,这个人真正感染了病毒的概率有多大?在这个人感染病毒时,出现这种检测结果的可能性为95%*95%*95% = 85.7%;而在这个人没有感染病毒时,出现这种检测结果的可能性为2%*2%*2% = 0.000008。根据最大似然法,我们应选择这个人感染了病毒。

根据贝叶斯方法,这个人感染病毒的概率为1%*95%*95%*95%/(1%*95%*95%*95%+99%*2%*2%*2%) = 99.9%。

当然,当时自己主要体会了同一独立分布在最大似然法中的要求。在以后的一个应用中,才对“模型已知,参数未定”这一要求有了进一步的认识。

时间: 2024-10-07 09:18:17

极大似然估计的朴素理解的相关文章

[白话解析] 深入浅出 极大似然估计 & 极大后验概率估计

[白话解析] 深入浅出极大似然估计 & 极大后验概率估计 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解 极大似然估计 & 极大后验概率估计,并且从名著中找了几个实例给大家看看这两种估计如何应用 & 其非常有趣的特点. 0x01 背景知识 1. 概率 vs 统计 概率(probability)和统计(statistics)看似两个相近的概念,其实研究的问题刚好相反. 1.1 概率 概率研究的是,已经知道了模型和参数后,给出一个事件发生的概率. 概率是一种

理解极大似然估计(MLE)

极大似然估计学习时总会觉得有点不可思议,为什么可以这么做,什么情况才可以用极大似然估计.本文旨在通俗理解MLE(Maximum Likelihood Estimate). 一.极大似然估计的思想与举例 举个简单的栗子:在一个盒子里有白色黑色小球若干个,每次有放回地从里面哪一个球,已知抽到白球的概率可能为0.7或者0.3,但不清楚,现在抽取三次,三次都没有抽到白球,请问盒子中一次抽到白球的概率是多少? 这类栗子有一个共性,我们假设白球的概率为p,然后用它去计算已知发生的事情“三次都是黑球”使其发生

极大似然估计和EM算法

title: 最大似然估计和EM算法 date: 2018-06-01 16:17:21 tags: [算法,机器学习] categories: 机器学习 mathjax: true --- 本文是对最大似然估计和EM算法做的一个总结. 一般来说,事件A发生的概率与某个未知参数$\theta?$有关,$\theta?$取值不同,则事件A发生的概率$p(A|\theta)?$也不同.当我们在一次实验中事件A发生了,则认为此时的$\theta?$值应是t的一切可能取值中使$p(A|\theta)?$

极大似然估计思想的最简单解释

极大似然估计思想的最简单解释 https://blog.csdn.net/class_brick/article/details/79724660?from=timeline 极大似然估计法的理解可以从三个角度入手,一个是整体性的思想,然后两个分别是离散状态的极大似然估计和连续状态的极大似然估计的简单例子. 一.思想 极大似然估计可以拆成三个词,分别是"极大"."似然"."估计",分别的意思如下:极大:最大的概率似然:看起来是这个样子的估计:就是

极大似然估计、贝叶斯估计、EM算法

参考文献:http://blog.csdn.net/zouxy09/article/details/8537620 极大似然估计 已知样本满足某种概率分布,但是其中具体的参数不清楚,极大似然估计估计就是把待估参数看做是确定性的量,只是其取值未知.最佳估计就是使得产生当前样本的概率最大下的参数值. 贝叶斯估计 已知样本满足某种概率分布,但参数未知.贝叶斯估计把待估参数看成符合某种先验概率分布的随机变量.对样本进行观测的过程就是把先验概率密度转化为后验概率密度,这样就利用样本信息修正了对参数的初始估

极大似然估计(Maximum Likelihood)与无监督

1. 极大似然与最大概率 因为不是科班出身,所以最初接触极大似然的时候,总是很奇怪为什么叫极大似然,而不直接叫做最大概率? 后来才知道极大似然是用来估计未知参数的,而最大概率的表述更适合于已知参数的情况下,求解出现最大概率的变量的,举例如下: Max L(θ) = θ1x1+θ2x2+θ3x3 Max P(x) = θ1x1+θ2x2+θ3x3 Max L(θ)是拥有多组观测样本X时,估计θ参数的方法,而Max P(x)正好相反,是已知θ时,求解什么样的x出现会使得P最大. 2.  极大似然与无

极大似然估计(maximum likelihood estimination)教程

极大似然估计法是求点估计的一种方法,最早由高斯提出,后来费歇尔(Fisher)在1912年重新提出.它属于数理统计的范畴. 大学期间我们都学过概率论和数理统计这门课程. 概率论和数理统计是互逆的过程.概率论可以看成是由因推果,数理统计则是由果溯因. 用两个简单的例子来说明它们之间的区别. 由因推果(概率论) 例1:设有一枚骰子,2面标记的是"正",4面标记的是"反".共投掷10次,问:5次"正"面朝上的概率? 解:记 "正面"

极大似然估计与贝叶斯定理

文章转载自:https://blog.csdn.net/zengxiantao1994/article/details/72787849 极大似然估计-形象解释看这篇文章:https://www.zhihu.com/question/24124998 贝叶斯定理-形象解释看这篇文章:https://www.zhihu.com/question/19725590/answer/217025594 极大似然估计 以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然

机器学习(二十五)— 极大似然估计、贝叶斯估计、最大后验概率估计区别

最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum aposteriori estimation, 简称MAP)是很常用的两种参数估计方法. 1.最大似然估计(MLE) 在已知试验结果(即是样本)的情况下,用来估计满足这些样本分布的参数,把可能性最大的那个参数作为真实的参数估计. 也就是说,最大似然估计,就是利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值(模型已知,参数未知). (1)基本思想 当从模型总体