STM32F4xx那点事(二)——系统时钟的配置

每次接触一款新的单片机,我都会很好奇该单片机的系统时钟是多少MHz,怎样才能达到Datasheet中描述的最大系统时钟,该单片机的外设的时钟会是多少MHz呢?如果要使用延时,我怎么编写程序才能实现精准的延时呢?我认为这些问题是我开始接触新单片机之前需要了解的。

对于每款ARM Cortex-M系列单片机而言,厂商为了更好的推广自己的单片机,同时方便设计人员使用,降低产品开发周期,都会将该单片机的外设相关寄存器以及外设的相关函数都实现并打包,放在官方网站上免费供大家使用。STM32F405RG的标准外设库还包含有DSP核的各种运算函数。如果需要,可以从http://www2.st.com/content/st_com/en/products/embedded-software/mcus-embedded-software/stm32-embedded-software/stm32-standard-peripheral-libraries/stsw-stm32065.html#下载。

如果使用标准外设库,我们可以根据标准外设库中的system_stm32f4xx.c文件中的代码分析可知:

#if defined(STM32F40_41xxx) || defined(STM32F427_437xx) || defined(STM32F429_439xx) || defined(STM32F401xx) || defined(STM32F469_479xx)
 #define PLL_M      25
#elif defined (STM32F446xx)
 #define PLL_M      8
#elif defined (STM32F410xx) || defined (STM32F411xE)
 #if defined(USE_HSE_BYPASS)
  #define PLL_M      8    
 #else /* !USE_HSE_BYPASS */
  #define PLL_M      16
 #endif /* USE_HSE_BYPASS */
#else
#endif
#if defined (STM32F40_41xxx)
#define PLL_N      336
/* SYSCLK = PLL_VCO / PLL_P */
#define PLL_P      2
#endif
#if defined(STM32F40_41xxx)
  uint32_t SystemCoreClock = 168000000;
#endif

根据编程手册关于时钟寄存器的内容,可知

PLL_VCO = (HSE_VALUE or HSI_VALUE / PLL_M) * PLL_N

SYSCLK=PLL_VCO/PLL_P

式中,HSE_VALUE表示单片机外接晶振的频率,HSI_VALUE表示单片机内部振荡器的频率,本实验板使用的是外部25MHz的晶振,根据程序中的配置,我们可以计算出SystemCoreClock =168000000。

时间: 2024-10-07 21:50:15

STM32F4xx那点事(二)——系统时钟的配置的相关文章

STM32F2系列系统时钟默认配置

新到一家公司后,有个项目要用到STM32F207Vx单片机,找到网上的例子照猫画虎的写了几个例子,比如ADC,可是到了ADC多通道转换的时候就有点傻眼了,这里面的时钟跑的到底是多少M呢?单片机外挂的时钟是25M,由于该单片机时钟系统较为复杂,有内部高/低.外部高/低 .PLL锁相环时钟,又有AHB总线时钟.APB1/2时钟,而例子中很少讲到系统时钟的默认配置是怎么配置呢?那么就发点时间研究下这个单片机内部的复杂时钟系统吧. 下图是STM32F2系列的时钟树结构图: 1.内部高速时钟HSI.外部高

STM32F4_RCC系统时钟配置及描述

Ⅰ.概述 对于系统时钟应该都知道它的作用,就是驱动整个芯片工作的心脏,如果没有了它,就等于人没有了心跳. 对于使用开发板学习的朋友来说,RCC系统时钟这一块知识估计没怎么去配置过,原因在于开发板提供的晶振基本上都是官方标准的时钟频率,使用官方的标准库,这样系统时钟就是默认的配置,也就是默认的频率.但对于自己设计开发板,或者想要改变系统时钟频率(如:降低功耗就需要降频)的朋友来说,配置系统时钟就有必要了. 关于时钟这一块对定时器(TIM.RTC.WDG等)相关的外设也比较重要,因为要求精准,就需要

STM32系统时钟

一.时钟树 STM32有4个时钟源: 1)HSE(高速外部时钟源) 外部晶振作为时钟源,范围为4~16MHz,常取为8MHz 2)HSI(高速内部时钟源) 由内部RC振荡器产生,频率为8MHz,但不稳定 3)LSE(低速外部时钟)   以外部晶振作为时钟源,主要供给实时时钟模块,一般用32.768KHz. 4)LSI(低速内部时钟)         由内部RC振荡器产生,也是提供给实时时钟模块,频率约为40KHz. 二.系统启动过程中时钟设置 以使用STM32库函数SystemInit为例进行说

7th.关于系统时钟的设置

言简意赅版本: 开启MPLL 设置LOCKTIME寄存器 (设置锁定时间) 设置MPLLCON寄存器(设置主频与FCLK的关系) 设置CLKDIVN寄存器(设置FCLK,HCLK,UCLK的倍数关系) MPLLCON参照官方提供参数配置即可. 详细情况 开发板在没有开启时钟前,整个开发板全靠一个12MHz的晶振提供频率来运行,当MPLLCON存入初值,并开始生效后,S3C2440A可以正常工作在400MHz下.开发板的主板上的外设和CPU也有一个频率限度,ARM920T内核的S3C2440的最高

windows 系统时钟

偶然发现了一个函数用以查询操作系统的时钟间隔: BOOL WINAPI GetSystemTimeAdjustment( _Out_ PDWORD lpTimeAdjustment, _Out_ PDWORD lpTimeIncrement, _Out_ PBOOL lpTimeAdjustmentDisabled ); 三个参数均为出参,仅第三个出参为FALSE值时,第一.二个参数才有意义. 第一参数单位为100ns,查询到的值为156001,即15.6ms 第二参数单位为100ns,查询到的

RT-thread内核之系统时钟

一.系统时钟 rt-thread的系统时钟模块采用全局变量rt_tick作为系统时钟节拍,该变量在系统时钟中断函数中不断加1.而系统时钟中断源和中断间隔一般由MCU硬件定时器(如stm32的嘀嗒定时器)决定,rt_tick初始值为0,每次MCU产生硬件定时中断后,在中断函数中不断加1,即rt_tick变量值与MCU硬件定时器定时中断间隔的乘积为系统真正运行时间(例如rt_tick=10,stm32嘀嗒定时器每隔1ms产生中断,则系统上电运行时间为10ms). 在bsp/stm32f40x/dri

LPC17XX 数据手册摘要之系统时钟与功率控制

系统时钟与功率控制 一.系统时钟 LPC17XX有三个独立的时钟振荡器,分别是主振荡器(MIAN_OSC).内部RC振荡器(IRC_OSC).实时时钟振荡器(RTC_OSC).LPC17XX时钟框图如下: LPC17XX 时钟框图 如上图所示,三个振荡器通过 system clock select 三选一 后经过(或不经过)MAIN PLL 最后经 CPU CLOCK DIVIDER 分频为CPU提供时钟:其中主振荡器(MAIN_OSC)还可通过USB PLL为USB提供时钟:内部RC振荡器(I

Zephyr学习(四)系统时钟

每一个支持多进程(线程)的系统都会有一个滴答时钟(系统时钟),这个时钟就好比系统的“心脏”,线程的休眠(延时)和时间片轮转调度都需要用到它. Cortex-M系列的内核都有一个systick时钟,这个时钟就是设计用来支持操作系统的,是一个24位的自动重装载向下计数器,中断入口就位于中断向量表里面,定义在zephyr-zephyr-v1.13.0\arch\arm\core\cortex_m\vector_table.S: 1 SECTION_SUBSEC_FUNC(exc_vector_tabl

认识STM32的系统时钟

STM32共有五个时钟源,分别是: HSI是高速内部时钟.RC振荡器,频率为8MHz: HSE是高速外部时钟,频率范围为4~6MHz; (可接石英/陶瓷谐振器或者接外部时钟源) LSI是低速内部时钟,频率40kHz; (独立看门狗时钟源.可作RTC时钟源) LSE是低速外部时钟,频率为32.768kHz石英晶体; (主要RTC时钟源) PLL是锁相环倍频输出,频率可选择为HSI/2.HSE或者HSE/2.倍频可选择2~16倍,但其输出频率最大不超过72MHz: 此处重点介绍系统时钟,一般其他所有