【Neural Network】林轩田机器学习技法

首先从单层神经网络开始介绍

最简单的单层神经网络可以看成是多个Perception的线性组合,这种简单的组合可以达到一些复杂的boundary。

比如,最简单的逻辑运算AND  OR NOT都可以由多个perception构成的单层神经网络模拟。

但是,单层感知器神经网络能力再强也是有限的,有些逻辑也无法完成。比如,XOR异或运算。

这个时候,就很自然地引出了多层神经网络。

通过这个例子,可以看到多层的神经网络的表达能力要比单层的要强。

上面给出了看待神经网络的一种方式:

1)从原始输入开始一直到OUTPUT之前的那一层,可以看做是对输入x做各种transform

2)与OUTPUT紧挨着的那一层,可以看做是隐层输出做线性组合

并且,在这里规定了神经网络‘regression‘类型用sqaure error来衡量。

这里有个环节值得说道一下,我们来比较集中transform的方式:

1)如果是sign的:是表达力很强,但是由于是离散的,不好优化

2)如果是linear的:好优化,但整个网络也都相当于是个线性的了,失去了较强的学习能力

3)popular choice 是一种tanh(S)的转换器:

  a. 这种转换器介于sign和linear之间,相当于是模拟化的sign

  b. 同时这个转换函数的导数的性质又很好(与逻辑回归类似)

这样,神经网络的各个环节是啥已经搞清楚了。林接下来给出了神经网络各个部分的符号表示:

这里有个地方需要注意:每个隐层都有一个bias神经元,它与下一层的每个神经元都有权重连线(为了简便,bias设为常数1,对下一层每个神经元的偏置影响体现在权重连线上)

到此,可以给出神经网络的一个物理解释:前一层的输出作为厚一层的输入,每两个隐层之间的权重相当于两个隐层之间的匹配模式。

模型构造完成了,接下来就是如何学习模型的参数。

gradient boosting方法对于多层神经网络来说,有些太困难。

在这里,还是采用前人的梯度下降的思路来求解。问题的关键就是如何高效地计算出错误对于每个权重的导数。

这里先从最后一层的权重开始求解:这个求解利用了求导链式法则,讲每个神经元的输入分数s作为中间连接,就可以直观求解了。

林在这里将error与每个神经元的输入分数s的导数抽象出来,记为一个特殊符号delta。这样,就可以表示出来任意的error对于权重w的导数了。

每个神经元的输出x是很好求的(只要给定w,带入就可以求得了);因此,下面只需要关注,如何把error对于权重w的导数求解出来。

这里求解delta采用了递归的思路:

1)sl经过tanh的计算→xl

2)xl经过下一层的权重→sl+1

沿着这两个思路,就把sl与sl+1给联系起来了,因此也获得了delta的递推关系。

又因为最后一层的delta是可以直接算出来的,因此,delta的计算思路也出来了,可以backwards的思路算出来。

上面就是伟大的BP神经网络求解算法,的原型。。。

1)S:选点

2)forward:(initial w)求x

3)backward:利用反向递推关系,求解delta

4)GD:对每个隐层权重更新

若干轮之后,返回整个神经网络的‘权重+偏置’参数

1)3)可以同步去做,获得若干个x*delta,然后average的动作后作用于4)(一周前面试的时候还被面试官问到了这个问题,现在看来就是取个平均,就可以获得mini-batch的效果了

下面再补充一些NN的其他问题:

1)神经网络由于太太复杂了,因此GD的方法难免落入local minimum

2)有关初始化选取W的问题,无外乎两种选择:

  a. 如果W选的很大,wx就会很大,优化作用不明显(联想tanh的函数图像,如果wx的绝对值很大,wx下一轮即使有比较大的变化,神经元的输出也变化不大了)

  b. 因此,通常的做法是w取相对小一些,随机一些的值,这样貌似能好一些

有关VC Dimension的问题:神经网络越复杂,VC就越大。

只要神经网络的层数一旦多起来,神经元一旦多起来,VC Dimension自然就起来了。因此,regularization自然不可避免。

最常规的做法是损失函数中加一个L2 regularizer惩罚项。

但:

1)L2惩罚项的作用效果是不让每个权重分量太大,但确实成比例变化的(Large的shrink large, small的shrink small),总的来说没啥改变

2)L1惩罚项倒是可以让某些项目为0了,但是not differentiable,所以不好求解

因此,林介绍了一种新的regularizer:weight-elimination regularizer:

1)无论是原来是大的还是小的w分量,都会有同等效果的shrink(大的减小了,小的可能减没了)

2)differentiable,求解比L1容易一些

在这一节课的问题中,给出了weight-elimination的求导结果:

通过这个结果分析,其实我TM啥也分析不出来。。。有功夫再看原始的论文吧:http://papers.nips.cc/paper/323-generalization-by-weight-elimination-with-application-to-forecasting.pdf

另外,还有一种stop early的方法防止过拟合:

这个方法的背后思想史:

1)有理论保证:迭代的次数愈多,dvc就越大

2)联合VC Dimension理论,early stopping有助于防治过拟合

时间: 2024-10-12 09:32:36

【Neural Network】林轩田机器学习技法的相关文章

【作业四】林轩田机器学习技法 + 机器学习公开新课学习个人体会

这次作业的coding任务量比较大,总的来说需要实现neural network, knn, kmeans三种模型. Q11~Q14为Neural Network的题目,我用单线程实现的,运行的时间比较长,因此把这几道题的正确答案记录如下: Q11: 6 Q12: 0.001 Q13: 0.01 Q14: 0.02 ≤ Eout ≤ 0.04 其中Q11和Q14的答案比较明显,Q12和Q13有两个答案比较接近(参考了讨论区的内容,最终也调出来了) neural network的代码实现思路如下:

【Matrix Factorization】林轩田机器学习技法

在NNet这个系列中讲了Matrix Factorization感觉上怪怪的,但是听完第一小节课程就明白了. 林首先介绍了机器学习里面比较困难的一种问题:categorical features 这种问题的特征就是一些ID编号这类的,不是numerical的. 如果要处理这种情况,需要encoding from categorical to numerical 最常用的一种encoding方法就是binary vector encoding(也是实习工作中用过的路子),将binary vecto

【Deep Learning】林轩田机器学习技法

这节课的题目是Deep learning,个人以为说的跟Deep learning比较浅,跟autoencoder和PCA这块内容比较紧密. 林介绍了deep learning近年来受到了很大的关注:deep NNet概念很早就有,只是受限于硬件的计算能力和参数学习方法. 近年来深度学习长足进步的原因有两个: 1)pre-training技术获得了发展 2)regularization的技术获得了发展 接下来,林开始介绍autoencoder的motivation. 每过一个隐层,可以看做是做了

【Linear Support Vector Machine】林轩田机器学习技法

首先从介绍了Large_margin Separating Hyperplane的概念. (在linear separable的前提下)找到largest-margin的分界面,即最胖的那条分界线.下面开始一步步说怎么找到largest-margin separating hyperplane. 接下来,林特意强调了变量表示符号的变化,原来的W0换成了b(这样的表示利于推导:觉得这种强调非常负责任,利于学生听懂,要不然符号换来换去的,谁知道你说的是啥) 既然目标是找larger-margin s

【Random Forest】林轩田机器学习技法

总体来说,林对于random forest的讲解主要是算法概况上的:某种程度上说,更注重insights. 林分别列举了Bagging和Decision Tree的各自特点: Random Forest就是这二者的结合体. 1)便于并行化 2)保留了C&RT的优势 3)通过bagging的方法削弱了fully-grown tree的缺点 这里提到一个insights:如果各个分类器的diversity越大,aggregation之后的效果可能就越好. 因此,Random Forest不仅样本是b

【Adaptive Boosting】林轩田机器学习技法

首先用一个形象的例子来说明AdaBoost的过程: 1. 每次产生一个弱的分类器,把本轮错的样本增加权重丢入下一轮 2. 下一轮对上一轮分错的样本再加重学习,获得另一个弱分类器 经过T轮之后,学得了T个弱分类器,再将这T个弱分类器组合在一起,形成了一个强分类器. 由于每一轮样本的权重都在变化,因此分类器学习的目标函数也产生了变化: 无论是SVM还是Logistic Regression都可以用这种方式学习,给每个样本增加不同的权重. 接下来问题就变成了,如何调整样本的权重?目的是什么? 林介绍了

【Dual Support Vector Machine】林轩田机器学习技法

这节课内容介绍了SVM的核心. 首先,既然SVM都可以转化为二次规划问题了,为啥还有有Dual啥的呢?原因如下: 如果x进行non-linear transform后,二次规划算法需要面对的是d`+1维度的N个变量,以及N个约束 如果d`的维度超大,那么二次规划解起来的代价就太大了.因此,SVM的精髓就在于做了如下的问题转化: 不需要问太深奥的数学,知道为啥要dual的motivation就可以了. 这里再次搬出前人的智慧:Lagrange Multipliers 但是这里跟ridge regr

【作业三】林轩田机器学习技法

这次关注的作业题目是Q13~Q20,主要是实现basic C&RT分类树,以及由其构成的Random Forest. 其中basic C&RT分类树的实现思路如下: (一)先抽象出来几个功能: 1)从local file读数据并转化成numpy.array的形式(考虑空行容错)(def read_input_data(path)) 2)如何根据某个维度的feature,计算这个feature产生的branch criteria(此题中为decision stump)(def learn_d

【Support Vector Regression】林轩田机器学习技法

上节课讲了Kernel的技巧如何应用到Logistic Regression中.核心是L2 regularized的error形式的linear model是可以应用Kernel技巧的. 这一节,继续沿用representer theorem,延伸到一般的regression问题. 首先想到的就是ridge regression,它的cost函数本身就是符合representer theorem的形式. 由于optimal solution一定可以表示成输入数据的线性组合,再配合Kernel T